
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4747727/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	<i>PNPT1</i> , <i>MYO15A</i> , <i>PTPRQ</i> , and <i>SLC12A2</i> â€essociated genetic and phenotypic heterogeneity among hearing impaired assortative mating families in Southern India. Annals of Human Genetics, 2022, 86, 1-13.	0.8	5
2	The noncoding genome and hearing loss. Human Genetics, 2022, 141, 323-333.	3.8	7
3	Autosomal dominant non-syndromic hearing loss maps to DFNA33 (13q34) and co-segregates with splice and frameshift variants in ATP11A, a phospholipid flippase gene. Human Genetics, 2022, 141, 431-444.	3.8	7
4	The Genomics of Auditory Function and Disease. Annual Review of Genomics and Human Genetics, 2022, 23, 275-299.	6.2	10
5	Identification and characterization of key long non-coding RNAs in the mouse cochlea. RNA Biology, 2021, 18, 1160-1169.	3.1	4
6	Expression pattern of cochlear microRNAs in the mammalian auditory hindbrain. Cell and Tissue Research, 2021, 383, 655-666.	2.9	7
7	Homozygote loss-of-function variants in the human COCH gene underlie hearing loss. European Journal of Human Genetics, 2021, 29, 338-342.	2.8	6
8	A synonymous variant in MYO15A enriched in the Ashkenazi Jewish population causes autosomal recessive hearing loss due to abnormal splicing. European Journal of Human Genetics, 2021, 29, 988-997.	2.8	8
9	Reprogramming of two induced pluripotent stem cell lines from a heterozygous GRIN2D developmental and epileptic encephalopathy (DEE) patient (BGUi011-A) and from a healthy family relative (BGUi012-A). Stem Cell Research, 2021, 51, 102178.	0.7	0
10	Genetic Heterogeneity and Core Clinical Features of NOG-Related-Symphalangism Spectrum Disorder. Otology and Neurotology, 2021, Publish Ahead of Print, e1143-e1151.	1.3	0
11	Disease-specific ACMG/AMP guidelines improve sequence variant interpretation for hearing loss. Genetics in Medicine, 2021, 23, 2208-2212.	2.4	18
12	Neonatal AAV gene therapy rescues hearing in a mouse model of <i>SYNE4</i> deafness. EMBO Molecular Medicine, 2021, 13, e13259.	6.9	39
13	A mouse model for benign paroxysmal positional vertigo with genetic predisposition for displaced otoconia. Genes, Brain and Behavior, 2020, 19, e12635.	2.2	8
14	Mechanical forces drive ordered patterning of hair cells in the mammalian inner ear. Nature Communications, 2020, 11, 5137.	12.8	38
15	Spectrum of genes for inherited hearing loss in the Israeli Jewish population, including the novel human deafness gene <scp><i>ATOH1</i></scp> . Clinical Genetics, 2020, 98, 353-364.	2.0	15
16	Striatin Is Required for Hearing and Affects Inner Hair Cells and Ribbon Synapses. Frontiers in Cell and Developmental Biology, 2020, 8, 615.	3.7	3
17	Genomic analysis of inherited hearing loss in the Palestinian population. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 20070-20076.	7.1	31
18	United by Hope, Divided by Access: Country Mapping of COVID-19 Information Accessibility and Its Consequences on Pandemic Eradication. Frontiers in Medicine, 2020, 7, 618337.	2.6	10

#	Article	IF	CITATIONS
19	Genetic Therapies for Hearing Loss: Accomplishments and Remaining Challenges. Neuroscience Letters, 2019, 713, 134527.	2.1	17
20	Atypical Auditory Brainstem Response and Protein Expression Aberrations Related to ASD and Hearing Loss in the Adnp Haploinsufficient Mouse Brain. Neurochemical Research, 2019, 44, 1494-1507.	3.3	19
21	Consensus interpretation of the p.Met34Thr and p.Val37Ile variants in GJB2 by the ClinGen Hearing Loss Expert Panel. Genetics in Medicine, 2019, 21, 2442-2452.	2.4	56
22	Striatin is a novel modulator of cell adhesion. FASEB Journal, 2019, 33, 4729-4740.	0.5	19
23	miR-96 is required for normal development of the auditory hindbrain. Human Molecular Genetics, 2018, 27, 860-874.	2.9	31
24	DNA methylation dynamics during embryonic development and postnatal maturation of the mouse auditory sensory epithelium. Scientific Reports, 2018, 8, 17348.	3.3	27
25	Expert specification of the ACMG/AMP variant interpretation guidelines for genetic hearing loss. Human Mutation, 2018, 39, 1593-1613.	2.5	312
26	Computational analysis of mRNA expression profiling in the inner ear reveals candidate transcription factors associated with proliferation, differentiation, and deafness. Human Genomics, 2018, 12, 30.	2.9	11
27	Genetics of hearing loss in the Arab population of Northern Israel. European Journal of Human Genetics, 2018, 26, 1840-1847.	2.8	21
28	Genome-wide identification and expression profiling of long non-coding RNAs in auditory and vestibular systems. Scientific Reports, 2017, 7, 8637.	3.3	20
29	Reduced changes in protein compared to mRNA levels across non-proliferating tissues. BMC Genomics, 2017, 18, 305.	2.8	77
30	Insights into inner ear-specific gene regulation: Epigenetics and non-coding RNAs in inner ear development and regeneration. Seminars in Cell and Developmental Biology, 2017, 65, 69-79.	5.0	33
31	Single cell analysis of the inner ear sensory organs. International Journal of Developmental Biology, 2017, 61, 205-213.	0.6	4
32	The Slc26a4 loop Mouse Model for Pendred's Syndrome and Nonsyndromic Deafness. , 2017, , 23-36.		0
33	The acquisition of mechanoâ€electrical transducer current adaptation in auditory hair cells requires myosin VI. Journal of Physiology, 2016, 594, 3667-3681.	2.9	30
34	What's hot about otoferlin. EMBO Journal, 2016, 35, 2502-2504.	7.8	2
35	Hearing loss patterns after cochlear implantation via the round window in an animal model. American Journal of Otolaryngology - Head and Neck Medicine and Surgery, 2016, 37, 162-168.	1.3	5
36	The GPSM2/LGN GoLoco motifs are essential for hearing. Mammalian Genome, 2016, 27, 29-46.	2.2	34

#	Article	IF	CITATIONS
37	Genetics of Hearing Loss. Otolaryngologic Clinics of North America, 2015, 48, 1041-1061.	1.1	105
38	Balance deficit enhances anxiety and balance training decreases anxiety in vestibular mutant mice. Behavioural Brain Research, 2015, 276, 76-83.	2.2	13
39	Human Gene Discovery for Understanding Development of the Inner Ear and Hearing Loss. , 2014, , 107-127.		1
40	Novel myosin mutations for hereditary hearing loss revealed by targeted genomic capture and massively parallel sequencing. European Journal of Human Genetics, 2014, 22, 768-775.	2.8	44
41	Apparent phenotypic anticipation in autosomal dominant connexin 26 deafness. Journal of Basic and Clinical Physiology and Pharmacology, 2014, 25, 289-292.	1.3	1
42	Israel Society for Auditory Research (ISAR): 2014 Annual Scientific Conference. Journal of Basic and Clinical Physiology and Pharmacology, 2014, 25, 267-268.	1.3	0
43	microRNA-224 regulates Pentraxin 3, a component of the humoral arm of innate immunity, in inner ear inflammation. Human Molecular Genetics, 2014, 23, 3138-3146.	2.9	33
44	The Many Faces of Sensorineural Hearing Loss: One Founder and Two Novel Mutations Affecting One Family of Mixed Jewish Ancestry. Genetic Testing and Molecular Biomarkers, 2014, 18, 123-126.	0.7	11
45	Ankrd6 is a mammalian functional homolog of Drosophila planar cell polarity gene diego and regulates coordinated cellular orientation in the mouse inner ear. Developmental Biology, 2014, 395, 62-72.	2.0	28
46	Next-generation sequencing of small RNAs from inner ear sensory epithelium identifies microRNAs and defines regulatory pathways. BMC Genomics, 2014, 15, 484.	2.8	46
47	Atrophic thyroid follicles and inner ear defects reminiscent of cochlear hypothyroidism in Slc26a4-related deafness. Mammalian Genome, 2014, 25, 304-316.	2.2	16
48	Connexin 26 null mice exhibit spiral ganglion degeneration that can be blocked by BDNF gene therapy. Hearing Research, 2014, 309, 124-135.	2.0	45
49	Molecular Etiology of Deafness and Cochlear Consequences. Springer Handbook of Auditory Research, 2013, , 17-39.	0.7	0
50	Advances in genetic diagnostics for hereditary hearing loss. Journal of Basic and Clinical Physiology and Pharmacology, 2013, 24, 165-170.	1.3	13
51	Rescue from Hearing Loss in Usher's Syndrome. New England Journal of Medicine, 2013, 369, 1758-1760.	27.0	8
52	Cytoplasmic Mislocalization of POU3F4 Due to Novel Mutations Leads to Deafness in Humans and Mice. Human Mutation, 2013, 34, 1102-1110.	2.5	20
53	Time-dependent Gene Expression Analysis of the Developing Superior Olivary Complex. Journal of Biological Chemistry, 2013, 288, 25865-25879.	3.4	32
54	MicroRNAs in sensorineural diseases of the ear. Frontiers in Molecular Neuroscience, 2013, 6, 52.	2.9	38

#	Article	IF	CITATIONS
55	Israel Society for Auditory Research (ISAR): 2013 Annual Scientific Conference. Journal of Basic and Clinical Physiology and Pharmacology, 2013, 24, 163-164.	1.3	0
56	The LINC complex is essential for hearing. Journal of Clinical Investigation, 2013, 123, 740-50.	8.2	130
57	A "Tric―to tighten cell-cell junctions in the cochlea for hearing. Journal of Clinical Investigation, 2013, 123, 3712-3715.	8.2	8
58	Genomic advances for gene discovery in hereditary hearing loss. Journal of Basic and Clinical Physiology and Pharmacology, 2012, 23, 93-7.	1.3	13
59	High-throughput sequencing to decipher the genetic heterogeneity of deafness. Genome Biology, 2012, 13, 245.	9.6	29
60	Egr2::Cre Mediated Conditional Ablation of Dicer Disrupts Histogenesis of Mammalian Central Auditory Nuclei. PLoS ONE, 2012, 7, e49503.	2.5	20
61	microRNAs: the art of silencing in the ear. EMBO Molecular Medicine, 2012, 4, 849-859.	6.9	44
62	Hereditary hearing loss: From human mutation to mechanism. Hearing Research, 2011, 281, 3-10.	2.0	54
63	Targeted genomic capture and massively parallel sequencing to identify genes for hereditary hearing loss in middle eastern families. Genome Biology, 2011, 12, R89.	9.6	183
64	A mouse model for human hearing loss DFNB30 due to loss of function of myosin IIIA. Mammalian Genome, 2011, 22, 170-177.	2.2	41
65	SPIKE: a database of highly curated human signaling pathways. Nucleic Acids Research, 2011, 39, D793-D799.	14.5	74
66	Integration of Human and Mouse Genetics Reveals Pendrin Function in Hearing and Deafness. Cellular Physiology and Biochemistry, 2011, 28, 535-544.	1.6	19
67	Functional Characterization of Pendrin Mutations Found in the Israeli and Palestinian Populations. Cellular Physiology and Biochemistry, 2011, 28, 477-484.	1.6	25
68	Integration of Transcriptomics, Proteomics, and MicroRNA Analyses Reveals Novel MicroRNA Regulation of Targets in the Mammalian Inner Ear. PLoS ONE, 2011, 6, e18195.	2.5	74
69	The inner ear phenotype of Volchok (Vlk): An ENU-induced mouse model for CHARGE syndrome. Audiological Medicine, 2010, 8, 110-119.	0.4	4
70	Whole Exome Sequencing and Homozygosity Mapping Identify Mutation in the Cell Polarity Protein GPSM2 as the Cause of Nonsyndromic Hearing Loss DFNB82. American Journal of Human Genetics, 2010, 87, 90-94.	6.2	261
71	Genomic Duplication and Overexpression of TJP2/ZO-2 Leads to Altered Expression of Apoptosis Genes in Progressive Nonsyndromic Hearing Loss DFNA51. American Journal of Human Genetics, 2010, 87, 101-109.	6.2	95
72	Progressive vestibular mutation leads to elevated anxiety. Brain Research, 2010, 1317, 157-164.	2.2	10

#	Article	IF	CITATIONS
73	Five novel loci for inherited hearing loss mapped by SNP-based homozygosity profiles in Palestinian families. European Journal of Human Genetics, 2010, 18, 407-413.	2.8	83
74	Collaborative genomics for human health and cooperation in the Mediterranean region. Nature Genetics, 2010, 42, 641-645.	21.4	26
75	Hearing loss: a common disorder caused by many rare alleles. Annals of the New York Academy of Sciences, 2010, 1214, 168-179.	3.8	52
76	Nonsense mutation of the stereociliar membrane protein gene PTPRQ in human hearing loss DFNB84. Journal of Medical Genetics, 2010, 47, 643-645.	3.2	40
77	MuD: an interactive web server for the prediction of non-neutral substitutions using protein structural data. Nucleic Acids Research, 2010, 38, W523-W528.	14.5	34
78	Calcium Oxalate Stone Formation in the Inner Ear as a Result of an Slc26a4 Mutation. Journal of Biological Chemistry, 2010, 285, 21724-21735.	3.4	81
79	Hearing Impairment: A Panoply of Genes and Functions. Neuron, 2010, 68, 293-308.	8.1	138
80	MicroRNAs are essential for development and function of inner ear hair cells in vertebrates. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 7915-7920.	7.1	169
81	Deafness Genes in Israel: Implications for Diagnostics in the Clinic. Pediatric Research, 2009, 66, 128-134.	2.3	34
82	CLRN1 Is Nonessential in the Mouse Retina but Is Required for Cochlear Hair Cell Development. PLoS Genetics, 2009, 5, e1000607.	3.5	43
83	Noise stresses the junctions to deaf. EMBO Molecular Medicine, 2009, 1, 85-87.	6.9	1
84	MicroRNAs and epigenetic regulation in the mammalian inner ear: implications for deafness. Mammalian Genome, 2009, 20, 581-603.	2.2	52
85	Mice with vestibular deficiency display hyperactivity, disorientation, and signs of anxiety. Behavioural Brain Research, 2009, 202, 210-217.	2.2	30
86	Hearing Loss: Mechanisms Revealed by Genetics and Cell Biology. Annual Review of Genetics, 2009, 43, 411-437.	7.6	178
87	A Novel SLC26A4 (PDS) Deafness Mutation Retained in the Endoplasmic Reticulum. JAMA Otolaryngology, 2008, 134, 403.	1.2	21
88	A Myo6 Mutation Destroys Coordination between the Myosin Heads, Revealing New Functions of Myosin VI in the Stereocilia of Mammalian Inner Ear Hair Cells. PLoS Genetics, 2008, 4, e1000207.	3.5	79
89	Genetics of Hearing Loss. , 2008, , 9-47.		3
90	Mouse models to study inner ear development and hereditary hearing loss. International Journal of Developmental Biology, 2007, 51, 609-631.	0.6	98

#	Article	IF	CITATIONS
91	Lhx3, a LIM domain transcription factor, is regulated by Pou4f3 in the auditory but not in the vestibular system. European Journal of Neuroscience, 2007, 25, 999-1005.	2.6	60
92	Mutations in a Novel Isoform of TRIOBP That Encodes a Filamentous-Actin Binding Protein Are Responsible for DFNB28 Recessive Nonsyndromic Hearing Loss. American Journal of Human Genetics, 2006, 78, 144-152.	6.2	113
93	The Structural Context of Disease-causing Mutations in Gap Junctions. Journal of Biological Chemistry, 2006, 281, 28958-28963.	3.4	14
94	Chromosomal Mapping and Phenotypic Characterization of Hereditary Otosclerosis Linked to the OTSC4 Locus. JAMA Otolaryngology, 2006, 132, 416.	1.2	58
95	Connexin-Associated Deafness and Speech Perception Outcome of Cochlear Implantation. JAMA Otolaryngology, 2006, 132, 495.	1.2	41
96	Genomic analysis of a heterogeneous Mendelian phenotype: multiple novel alleles for inherited hearing loss in the Palestinian population. Human Genomics, 2006, 2, 203-11.	2.9	51
97	Gfi1 and Gfi1b act equivalently in haematopoiesis, but have distinct, nonâ€øverlapping functions in inner ear development. EMBO Reports, 2006, 7, 326-333.	4.5	76
98	Therapeutics of hearing loss: expectations vs reality. Drug Discovery Today, 2005, 10, 1323-1330.	6.4	32
99	Connexins in Hearing Loss: A Comprehensive Overview. Journal of Basic and Clinical Physiology and Pharmacology, 2005, 16, 101-116.	1.3	32
100	Promoting Arab and Israeli cooperation: peacebuilding through health initiatives. Lancet, The, 2005, 365, 1274-1277.	13.7	37
101	GJB2 Mutations and Degree of Hearing Loss: A Multicenter Study. American Journal of Human Genetics, 2005, 77, 945-957.	6.2	455
102	Developmental Genes Associated with Human Hearing Loss. , 2005, , 204-232.		3
103	The R245X Mutation of PCDH15 in Ashkenazi Jewish Children Diagnosed with Nonsyndromic Hearing Loss Foreshadows Retinitis Pigmentosa. Pediatric Research, 2004, 55, 995-1000.	2.3	33
104	Transcription profiling of inner ears from Pou4f3ddl/ddl identifies Gfi1 as a target of the Pou4f3 deafness gene. Human Molecular Genetics, 2004, 13, 2143-2153.	2.9	195
105	An ENU-induced mutation in AP-2α leads to middle earand ocular defects in Doarad mice. Mammalian Genome, 2004, 15, 424-432.	2.2	20
106	A Myo7a mutation cosegregates with stereocilia defects and low-frequency hearing impairment. Mammalian Genome, 2004, 15, 686-697.	2.2	48
107	Brn-3c (POU4F3) regulates BDNF and NT-3 promoter activity. Biochemical and Biophysical Research Communications, 2004, 324, 372-381.	2.1	39
108	Myosin VI is required for structural integrity of the apical surface of sensory hair cells in zebrafish. Developmental Biology, 2004, 272, 328-338.	2.0	94

#	Article	IF	CITATIONS
109	Multiple Mutations ofMYO1A, a Cochlear-Expressed Gene, in Sensorineural Hearing Loss. American Journal of Human Genetics, 2003, 72, 1571-1577.	6.2	97
110	Prevalence and Evolutionary Origins of the del(GJB6-D13S1830) Mutation in the DFNB1 Locus in Hearing-Impaired Subjects: a Multicenter Study. American Journal of Human Genetics, 2003, 73, 1452-1458.	6.2	269
111	Prospects for Gene Therapy in Hearing Loss. Journal of Basic and Clinical Physiology and Pharmacology, 2003, 14, 77-84.	1.3	8
112	The DFNA15 Deafness Mutation Affects POU4F3 Protein Stability, Localization, and Transcriptional Activity. Molecular and Cellular Biology, 2003, 23, 7957-7964.	2.3	57
113	Myo15 function is distinct from Myo6, Myo7a and pirouette genes in development of cochlear stereocilia. Human Molecular Genetics, 2003, 12, 2797-2805.	2.9	27
114	Audiological Manifestations and Features of Connexin 26 Deafness. Audiological Medicine, 2003, 1, 5-11.	0.4	21
115	A Mutation ofPCDH15among Ashkenazi Jews with the Type 1 Usher Syndrome. New England Journal of Medicine, 2003, 348, 1664-1670.	27.0	142
116	Mouse Models for Deafness: Lessons for the Human Inner Ear and Hearing Loss. Ear and Hearing, 2003, 24, 332-341.	2.1	34
117	From flies' eyes to our ears: Mutations in a human class III myosin cause progressive nonsyndromic hearing loss DFNB30. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 7518-7523.	7.1	230
118	Genes and Mutations in Hearing Impairment. , 2002, , 23-44.		0
119	Otoancorin, an inner ear protein restricted to the interface between the apical surface of sensory epithelia and their overlying acellular gels, is defective in autosomal recessive deafness DFNB22. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 6240-6245.	7.1	163
120	Genetics of Deafness: Recent Advances and Clinical Implications. Journal of Basic and Clinical Physiology and Pharmacology, 2002, 13, 75-88.	1.3	6
121	The Clinical Presentation of DFNA15/POU4F3. , 2002, 61, 92-97.		5
122	Mouse models for human deafness: current tools for new fashions. Trends in Molecular Medicine, 2002, 8, 447-451.	6.7	30
123	A mutation in GJB3 is associated with recessive erythrokeratodermia variabilis (EKV) and leads to defective trafficking of the connexin 31 protein. Human Molecular Genetics, 2002, 11, 1311-1316.	2.9	73
124	Genetics of congenital deafness in the Palestinian population: multiple connexinÂ26 alleles with shared origins in the Middle East. Human Genetics, 2002, 110, 284-289.	3.8	127
125	USH3A transcripts encode clarin-1, a four-transmembrane-domain protein with a possible role in sensory synapses. European Journal of Human Genetics, 2002, 10, 339-350.	2.8	153
126	Beethoven, a mouse model for dominant, progressive hearing loss DFNA36. Nature Genetics, 2002, 30, 257-258.	21.4	246

#	Article	IF	CITATIONS
127	MYO6, the Human Homologue of the Gene Responsible for Deafness in Snell's Waltzer Mice, Is Mutated in Autosomal Dominant Nonsyndromic Hearing Loss. American Journal of Human Genetics, 2001, 69, 635-640.	6.2	212
128	Modifying with mitochondria. Nature Genetics, 2001, 27, 136-137.	21.4	1
129	Inherited Connexin Mutations Associated with Hearing Loss. Cell Communication and Adhesion, 2001, 8, 419-424.	1.0	6
130	Positional-Candidate Cloning of Genes from Mouse Mutants. , 2001, 158, 369-379.		6
131	Clinical Characterization of Genetic Hearing Loss Caused by a Mutation in the POU4F3 Transcription Factor. JAMA Otolaryngology, 2000, 126, 633.	1.2	31
132	Genomic structure of the human unconventional myosin VI gene. Gene, 2000, 261, 269-275.	2.2	19
133	The Genetics of Hearing Loss. Journal of Basic and Clinical Physiology and Pharmacology, 1999, 10, 163-71.	1.3	1
134	Tailchaser (Tlc): a new mouse mutation affecting hair bundle differentiation and hair cell survival. Journal of Neurocytology, 1999, 28, 969-985.	1.5	37
135	Unconventional myosins and the genetics of hearing loss. , 1999, 89, 147-157.		105
136	High frequency of the deafness-associated 167delT mutation in the connexin 26 (GJB2) gene in Israeli Ashkenazim. American Journal of Medical Genetics Part A, 1999, 86, 499-500.	2.4	67
137	Role of Myosin VI in the Differentiation of Cochlear Hair Cells. Developmental Biology, 1999, 214, 331-341.	2.0	251
138	Hear come more genes!. Nature Medicine, 1998, 4, 1238-1239.	30.7	12
139	Targeted Disruption of the Mouse Caspase 8 Gene Ablates Cell Death Induction by the TNF Receptors, Fas/Apo1, and DR3 and Is Lethal Prenatally. Immunity, 1998, 9, 267-276.	14.3	1,139
140	Mutation in Transcription Factor <i>POU4F3</i> Associated with Inherited Progressive Hearing Loss in Humans. Science, 1998, 279, 1950-1954.	12.6	322
141	Motors, channels and the sounds of silence. Nature Medicine, 1997, 3, 608-609.	30.7	3
142	Sounds from the cochlea. Nature, 1997, 390, 559-560.	27.8	5
143	Identification and Chromosomal Localization of Atm, the Mouse Homolog of the Ataxia–Telangiectasia Gene. Genomics, 1996, 35, 39-45.	2.9	51
144	Mapping of Unconventional Myosins in Mouse and Human. Genomics, 1996, 36, 431-439.	2.9	84

#	Article	IF	CITATIONS
145	The mouse Snell's waltzer deafness gene encodes an unconventional myosin required for structural integrity of inner ear hair cells. Nature Genetics, 1995, 11, 369-375.	21.4	487
146	Murine chromosomal location of eight members of the hepatocyte nuclear factor 3/fork head winged helix family of transcription factors. Genomics, 1995, 25, 388-393.	2.9	30
147	Mapping of the mouse homolog of the human runt domain gene, AML2, to the distal region of mouse chromosome 4. Genomics, 1995, 25, 603-605.	2.9	24
148	cDNA Cloning, Tissue Distribution, and Chromosomal Localization of Ocp2, a Gene Encoding a Putative Transcription-Associated Factor Predominantly Expressed in the Auditory Organs. Genomics, 1995, 27, 389-398.	2.9	47
149	Chromosomal Organization and Transcriptional Regulation of Human GEM and Localization of the Human and Mouse GEM Loci Encoding an Inducible Ras-Like Protein. Genomics, 1995, 30, 558-564.	2.9	20
150	Mapping of Murine Fibroblast Growth Factor Receptors Refines Regions of Homology between Mouse and Human Chromosomes. Genomics, 1994, 21, 656-658.	2.9	28
151	Expression of manganese superoxide dismutase is not altered in transgenic mice with elevated level of copper-zinc superoxide dismutase. Free Radical Biology and Medicine, 1993, 15, 629-636.	2.9	26
152	Murine Chromosomal Location of Four Class III POU Transcription Factors. Genomics, 1993, 18, 131-133.	2.9	20
153	Molecular Diversity of the SCG10/Stathmin Gene Family in the Mouse. Genomics, 1993, 18, 360-373.	2.9	58
154	Use of Transgenic Animals to Study Disease Models: Hyperoxic Lung Injury and Ischemic Acute Renal Failure in "High SOD―Mice. Renal Failure, 1992, 14, 391-394.	2.1	9
155	Murine chromosomal location of four hepatocyte-enriched transcription factors: HNf-3α, HNF-3Î2, HNF-3Î3, and HNF-4. Genomics, 1992, 13, 264-268.	2.9	25
156	Premature aging changes in neuromuscular junctions of transgenic mice with an extra human CuZnSOD gene: A model for tongue pathology in Down's syndrome. Journal of the Neurological Sciences, 1988, 88, 41-53.	0.6	51
157	Down's syndrome: Abnormal neuromuscular junction in tongue of transgenic mice with elevated levels of human Cu/Zn-superoxide dismutase. Cell, 1988, 54, 823-829.	28.9	222

158 Molecular Motors in Sensory Defects. , 0, , 511-537.