Bruno Beaumelle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4747561/publications.pdf

Version: 2024-02-01

933264 996849 15 856 10 15 citations h-index g-index papers 15 15 15 1112 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	How palmitoylation affects trafficking and signaling of membrane receptors. Biology of the Cell, 2022, 114, 61-72.	0.7	13
2	Unconventional secretion of viral proteins. Seminars in Cell and Developmental Biology, 2018, 83, 8-11.	2.3	10
3	Cyclophilin A enables specific HIV-1 Tat palmitoylation and accumulation in uninfected cells. Nature Communications, 2018, 9, 2251.	5.8	30
4	Phosphatidylinositol (4,5)-bisphosphate-mediated pathophysiological effect of HIV-1 Tat protein. Biochimie, 2017, 141, 80-85.	1.3	5
5	HIV-Tat induces a decrease in I Kr and I Ks via reduction in phosphatidylinositol-(4,5)-bisphosphate availability. Journal of Molecular and Cellular Cardiology, 2016, 99, 1-13.	0.9	24
6	Detecting HIV-1 Tat in Cell Culture Supernatants by ELISA or Western Blot. Methods in Molecular Biology, 2016, 1354, 329-342.	0.4	8
7	HIV-1 Tat inhibits phagocytosis by preventing the recruitment of Cdc42 to the phagocytic cup. Nature Communications, 2015, 6, 6211.	5.8	30
8	HIV-1 Tat protein inhibits neurosecretion by binding to phosphatidylinositol 4,5-bisphosphate. Journal of Cell Science, 2013, 126, 454-463.	1.2	31
9	HIV-1 Tat protein perturbs diacylglycerol production at the plasma membrane of neurosecretory cells during exocytosis. Communicative and Integrative Biology, 2013, 6, e25145.	0.6	7
10	The Ins and Outs of <scp>HIV</scp> â€1 <scp>Tat</scp> . Traffic, 2012, 13, 355-363.	1.3	208
11	HIVâ€1 Tat is unconventionally secreted through the plasma membrane. Cell Biology International, 2010, 34, 409-413.	1.4	63
12	Phosphatidylinositol-(4,5)-bisphosphate enables efficient secretion of HIV-1 Tat by infected T-cells. EMBO Journal, 2010, 29, 1348-1362.	3.5	174
13	Mechanism for HIV-1 Tat Insertion into the Endosome Membrane. Journal of Biological Chemistry, 2009, 284, 22736-22746.	1.6	45
14	HIV-1 Tat Enters T Cells Using Coated Pits before Translocating from Acidified Endosomes and Eliciting Biological Responses. Molecular Biology of the Cell, 2004, 15, 2347-2360.	0.9	186
15	The Ability of Chloroquine To Prevent Tat-Induced Cytokine Secretion by Monocytes Is Implicated in Its In Vivo Anti-Human Immunodeficiency Virus Type 1 Activity. Journal of Virology, 2004, 78, 12054-12057.	1.5	22