
Lih Kuo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4747462/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Estimation of nitric oxide production and reactionrates in tissue by use of a mathematical model. American Journal of Physiology - Heart and Circulatory Physiology, 1998, 274, H2163-H2176.	1.5	240
2	Longitudinal Gradients for Endothelium-Dependent and -Independent Vascular Responses in the Coronary Microcirculation. Circulation, 1995, 92, 518-525.	1.6	210
3	Erythrocytes Possess an Intrinsic Barrier to Nitric Oxide Consumption. Journal of Biological Chemistry, 2000, 275, 2342-2348.	1.6	205
4	Constitutive expression of arginase in microvascular endothelial cells counteracts nitric oxideâ€mediated vasodilatory function. FASEB Journal, 2001, 15, 1264-1266.	0.2	197
5	Upregulation of Vascular Arginase in Hypertension Decreases Nitric Oxide–Mediated Dilation of Coronary Arterioles. Hypertension, 2004, 44, 935-943.	1.3	188
6	cAMP-Independent Dilation of Coronary Arterioles to Adenosine. Circulation Research, 1999, 85, 634-642.	2.0	182
7	lschemiaâ€reperfusion selectively impairs nitric oxide―mediated dilation in coronary arterioles: counteracting role of arginase. FASEB Journal, 2003, 17, 2328-2330.	0.2	175
8	Effective diffusion distance of nitric oxide in the microcirculation. American Journal of Physiology - Heart and Circulatory Physiology, 1998, 274, H1705-H1714.	1.5	164
9	Arginase modulates nitric oxide production in activated macrophages. American Journal of Physiology - Heart and Circulatory Physiology, 1998, 274, H342-H348.	1.5	159
10	TNF-α Contributes to Endothelial Dysfunction in Ischemia/Reperfusion Injury. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26, 475-480.	1.1	157
11	Role of Nitric Oxide in the Coronary Microvascular Responses to Adenosine and Increased Metabolic Demand. Circulation, 1995, 91, 1807-1813.	1.6	154
12	Divergent Roles of Angiotensin II AT1and AT2Receptors in Modulating Coronary Microvascular Function. Circulation Research, 2003, 92, 322-329.	2.0	149
13	Human C-reactive protein induces endothelial dysfunction and uncoupling of eNOS in vivo. Atherosclerosis, 2009, 206, 61-68.	0.4	132
14	C-Reactive Protein Inhibits Endothelium-Dependent NO-Mediated Dilation in Coronary Arterioles by Activating p38 Kinase and NAD(P)H Oxidase. Arteriosclerosis, Thrombosis, and Vascular Biology, 2005, 25, 995-1001.	1.1	131
15	Hydrogen peroxide induces endothelium-dependent and -independent coronary arteriolar dilation: role of cyclooxygenase and potassium channels. American Journal of Physiology - Heart and Circulatory Physiology, 2003, 285, H2255-H2263.	1.5	129
16	Acidosis-Induced Coronary Arteriolar Dilation Is Mediated by ATP-Sensitive Potassium Channels in Vascular Smooth Muscle. Circulation Research, 1996, 78, 50-57.	2.0	121
17	LDLs Impair Vasomotor Function of the Coronary Microcirculation. Circulation Research, 1998, 83, 404-414.	2.0	110
18	The Involvement of Tyrosine Kinases, Cyclic AMP/Protein Kinase A, and p38 Mitogen-Activated Protein Kinase in IL-13-Mediated Arginase I Induction in Macrophages: Its Implications in IL-13-Inhibited Nitric Oxide Production. Journal of Immunology, 2000, 165, 2134-2141.	0.4	105

#	Article	IF	CITATIONS
19	Dilation of Retinal Arterioles in Response to Lactate: Role of Nitric Oxide, Guanylyl Cyclase, and ATP-Sensitive Potassium Channels. , 2006, 47, 693.		104
20	Downregulation of Endothelial Constitutive Nitric Oxide Synthase Expression by Lipopolysaccharide. Biochemical and Biophysical Research Communications, 1996, 225, 1-5.	1.0	101
21	Upregulation of Arginase by H 2 O 2 Impairs Endothelium-Dependent Nitric Oxide-Mediated Dilation of Coronary Arterioles. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26, 2035-2042.	1.1	93
22	Activation of Barium-Sensitive Inward Rectifier Potassium Channels Mediates Remote Dilation of Coronary Arterioles. Circulation, 2001, 104, 1749-1753.	1.6	87
23	Differential Roles of the C and N Termini of Orai1 Protein in Interacting with Stromal Interaction Molecule 1 (STIM1) for Ca2+ Release-activated Ca2+ (CRAC) Channel Activation. Journal of Biological Chemistry, 2013, 288, 11263-11272.	1.6	83
24	Resveratrol, a Component of Red Wine, Elicits Dilation of Isolated Porcine Retinal Arterioles: Role of Nitric Oxide and Potassium Channels. , 2007, 48, 4232.		82
25	ox <scp>LDL</scp> specifically impairs endothelium-dependent, NO-mediated dilation of coronary arterioles. American Journal of Physiology - Heart and Circulatory Physiology, 2000, 278, H175-H183.	1.5	80
26	Activation ofÂJNK andÂxanthine oxidase byÂTNF-α impairs nitric oxide-mediated dilation ofÂcoronary arterioles. Journal of Molecular and Cellular Cardiology, 2006, 40, 247-257.	0.9	80
27	Erythrocyte Consumption of Nitric Oxide: Competition Experiment and Model Analysis. Nitric Oxide - Biology and Chemistry, 2001, 5, 18-31.	1.2	78
28	Functional and Molecular Characterization of Receptor Subtypes Mediating Coronary Microvascular Dilation to Adenosine. Journal of Molecular and Cellular Cardiology, 2001, 33, 271-282.	0.9	76
29	Requisite Roles of A2AReceptors, Nitric Oxide, and KATPChannels in Retinal Arteriolar Dilation in Response to Adenosine. , 2005, 46, 2113.		70
30	Effect of Systemic Administration of Simvastatin on Retinal Circulation. JAMA Ophthalmology, 2006, 124, 665.	2.6	65
31	Coronary Arteriolar Dilation to Acidosis. Circulation, 1999, 99, 558-563.	1.6	60
32	Divergent Roles of Nitric Oxide and Rho Kinase in Vasomotor Regulation of Human Retinal Arterioles. , 2010, 51, 1583.		60
33	Coronary arteriolar vasoconstriction to angiotensin II is augmented in prediabetic metabolic syndrome via activation of AT1 receptors. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 288, H2154-H2162.	1.5	59
34	C-Reactive Protein Inhibits Endothelium-Dependent Nitric Oxide-Mediated Dilation of Retinal Arterioles via Enhanced Superoxide Production. , 2008, 49, 2053.		59
35	Enhanced endothelin-1/Rho-kinase signalling and coronary microvascular dysfunction in hypertensive myocardial hypertrophy. Cardiovascular Research, 2017, 113, 1329-1337.	1.8	53
36	Regulation of nitric oxide consumption by hypoxic red blood cells. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 12504-12509.	3.3	52

#	Article	IF	CITATIONS
37	Simvastatin Elicits Dilation of Isolated Porcine Retinal Arterioles: Role of Nitric Oxide and Mevalonate-Rho Kinase Pathways. , 2007, 48, 825.		52
38	Changes in coronary endothelial cell Ca2+ concentration during shear stress- and agonist-induced vasodilation. American Journal of Physiology - Heart and Circulatory Physiology, 1999, 276, H1706-H1714.	1.5	50
39	A mathematical model for the distribution of hemodynamic parameters in the human retinal microvascular network. Journal of Biorheology, 2009, 23, 77-86.	0.2	50
40	Safety and toxicity of nanomaterials for ocular drug delivery applications. Nanotoxicology, 2016, 10, 836-860.	1.6	48
41	Estrogen potentiates constrictor prostanoid function in female rat aorta by upregulation of cyclooxygenase-2 and thromboxane pathway expression. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 294, H2444-H2455.	1.5	44
42	Functional and Molecular Characterization of the Endothelin System in Retinal Arterioles. , 2009, 50, 3329.		40
43	Correlation of spectral domain optical coherence tomography with histology and electron microscopy in the porcine retina. Experimental Eye Research, 2018, 177, 181-190.	1.2	40
44	Local Regulation of Microvascular Perfusion. , 2008, , 161-284.		39
45	Oxidized Low-Density Lipoprotein Inhibits Nitric Oxide-Mediated Coronary Arteriolar Dilation by Up-regulating Endothelial Arginase I. Microcirculation, 2011, 18, 36-45.	1.0	38
46	Sildenafil (Viagra) Evokes Retinal Arteriolar Dilation: Dual Pathways via NOS Activation and Phosphodiesterase Inhibition. , 2008, 49, 720.		36
47	Brimonidine evokes heterogeneous vasomotor response of retinal arterioles: diminished nitric oxide-mediated vasodilation when size goes small. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 291, H231-H238.	1.5	35
48	Stromal Interaction Molecule 1 (STIM1) and Orai1 Mediate Histamine-evoked Calcium Entry and Nuclear Factor of Activated T-cells (NFAT) Signaling in Human Umbilical Vein Endothelial Cells. Journal of Biological Chemistry, 2014, 289, 29446-29456.	1.6	33
49	Integrin-binding peptides containing RGD produce coronary arteriolar dilation via cyclooxygenase activation. American Journal of Physiology - Heart and Circulatory Physiology, 2001, 281, H2378-H2384.	1.5	31
50	Temporal Development of Retinal Arteriolar Endothelial Dysfunction in Porcine Type 1 Diabetes. , 2012, 53, 7943.		31
51	Heterogeneous \hat{I}^2 2 -Adrenoceptor Expression and Dilation in Coronary Arterioles Across the Left Ventricular Wall. Circulation, 2004, 110, 2708-2712.	1.6	30
52	Dietary-Induced Atherosclerotic Lesions Have Increased Levels of Acidic FGF mRNA and Altered Cytoskeletal and Extracellular Matrix mRNA Expression. Journal of Vascular Research, 1993, 30, 327-332.	0.6	29
53	Exercise Training Restores Coronary Arteriolar Dilation to NOS Activation Distal to Coronary Artery Occlusion. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 791-798.	1.1	28
54	Constriction of Retinal Arterioles to Endothelin-1: Requisite Role of Rho Kinase Independent of Protein Kinase C and L-Type Calcium Channels. , 2012, 53, 2904.		28

#	Article	IF	CITATIONS
55	Vasomotor Regulation of Coronary Microcirculation by Oxidative Stress: Role of Arginase. Frontiers in Immunology, 2013, 4, 237.	2.2	28
56	A prototype tissue engineered blood vessel using amniotic membrane as scaffold. Acta Biomaterialia, 2012, 8, 3342-3348.	4.1	27
57	Selective Activation of Lectin-Like Oxidized Low-Density Lipoprotein Receptor-1 Mediates C-Reactive Protein–Evoked Endothelial Vasodilator Dysfunction in Coronary Arterioles. Circulation Research, 2014, 114, 92-100.	2.0	27
58	Constriction of Retinal Venules to Endothelin-1: Obligatory Roles of ET _A Receptors, Extracellular Calcium Entry, and Rho Kinase. , 2018, 59, 5167.		27
59	Lipopolysaccharide Activates Endothelial Nitric Oxide Synthase through Protein Tyrosine Kinase. Biochemical and Biophysical Research Communications, 1998, 245, 33-37.	1.0	26
60	Endothelin-1 impairs coronary arteriolar dilation: Role of p38 kinase-mediated superoxide production from NADPH oxidase. Journal of Molecular and Cellular Cardiology, 2015, 86, 75-84.	0.9	25
61	C-reactive protein impairs coronary arteriolar dilation to prostacyclin synthase activation: Role of peroxynitrite. Journal of Molecular and Cellular Cardiology, 2009, 47, 196-202.	0.9	24
62	Acute and Chronic Hyperglycemia Elicit JIP1/JNK-Mediated Endothelial Vasodilator Dysfunction of Retinal Arterioles. , 2016, 57, 4333.		23
63	Transmural difference in coronary arteriolar dilation to adenosine: effect of luminal pressure and K _{ATP} channels. American Journal of Physiology - Heart and Circulatory Physiology, 2000, 279, H2612-H2619.	1.5	20
64	Cellular signalling pathways mediating dilation of porcine pial arterioles to adenosine A2A receptor activation. Cardiovascular Research, 2013, 99, 156-163.	1.8	20
65	VEGF Receptor-2–Linked PI3K/Calpain/SIRT1 Activation Mediates Retinal Arteriolar Dilations to VEGF and Shear Stress. , 2015, 56, 5381.		19
66	Sodium azide dilates coronary arterioles via activation of inward rectifier K+ channels and Na+-K+-ATPase. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 290, H1617-H1623.	1.5	18
67	High glucose impairs EDHF-mediated dilation of coronary arterioles via reduced cytochrome P450 activity. Microvascular Research, 2011, 82, 356-363.	1.1	17
68	Retinal arteriolar responses to acute severe elevation in systemic blood pressure in cats: Role of endothelium-derived factors. Experimental Eye Research, 2012, 103, 63-70.	1.2	17
69	TP508 (Chrysalin®) Reverses Endothelial Dysfunction and Increases Perfusion and Myocardial Function in Hearts With Chronic Ischemia. Journal of Cardiovascular Pharmacology and Therapeutics, 2008, 13, 214-225.	1.0	16
70	Acute Retinal Ischemia Inhibits Endothelium-Dependent Nitric Oxide–Mediated Dilation of Retinal Arterioles via Enhanced Superoxide Production. , 2012, 53, 30.		14
71	Requisite roles of LOX-1, JNK, and arginase in diabetes-induced endothelial vasodilator dysfunction of porcine coronary arterioles. Journal of Molecular and Cellular Cardiology, 2019, 131, 82-90.	0.9	14
72	Retinal blood flow dysregulation precedes neural retinal dysfunction in type 2 diabetic mice. Scientific Reports, 2021, 11, 18401.	1.6	13

#	Article	IF	CITATIONS
73	Role of Endothelium in Vasomotor Responses to Endothelin System and Protein Kinase C Activation in Porcine Retinal Arterioles. , 2013, 54, 7587.		12
74	Histamine-Induced Dilation of Isolated Porcine Retinal Arterioles: Role of Endothelium-Derived Hyperpolarizing Factor. , 2016, 57, 4791.		12
75	Longitudinal stability of retinal blood flow regulation in response to flicker stimulation and systemic hyperoxia in mice assessed with laser speckle flowgraphy. Scientific Reports, 2020, 10, 19796.	1.6	11
76	Hyperglycemia Enhances Constriction of Retinal Venules via Activation of the Reverse-Mode Sodium-Calcium Exchanger. Diabetes, 2019, 68, db190069.	0.3	10
77	Role of Arginase in Selective Impairment of Endothelium-Dependent Nitric Oxide Synthase-Mediated Dilation of Retinal Arterioles during Early Diabetes. , 2020, 61, 36.		10
78	Role of Endothelium in Vasomotor Responses to Endothelin System and Protein Kinase C Activation in Porcine Retinal Arterioles. Investigative Ophthalmology and Visual Science, 2013, 54, 7587-7594.	3.3	10
79	Alterations of Ocular Hemodynamics Impair Ophthalmic Vascular and Neuroretinal Function. American Journal of Pathology, 2018, 188, 818-827.	1.9	9
80	Intravitreal Stanniocalcin-1 Enhances New Blood Vessel Growth in a Rat Model of Laser-Induced Choroidal Neovascularization. , 2018, 59, 1125.		9
81	Hyperglycemia Augments Endothelin-1–Induced Constriction of Human Retinal Venules. Translational Vision Science and Technology, 2020, 9, 1.	1.1	8
82	Newly Identified Peptide, Peptide Lv, Promotes Pathological Angiogenesis. Journal of the American Heart Association, 2019, 8, e013673.	1.6	6
83	Data on SD-OCT image acquisition, ultrastructural features, and horizontal tissue shrinkage in the porcine retina. Data in Brief, 2018, 21, 1019-1025.	0.5	5
84	Regulation of Coronary Vasomotor Function by Reactive Oxygen Species. Molecular Medicine & Therapeutics, 2012, 01, .	1.0	5
85	Activation of Coronary Arteriolar PKCβ2 Impairs Endothelial NO-Mediated Vasodilation: Role of JNK/Rho Kinase Signaling and Xanthine Oxidase Activation. International Journal of Molecular Sciences, 2021, 22, 9763.	1.8	4
86	Contributions of Sodium-Hydrogen Exchanger 1 and Mitogen-Activated Protein Kinases to Enhanced Retinal Venular Constriction to Endothelin-1 in Diabetes. Diabetes, 2021, 70, 2353-2363.	0.3	3
87	Laser-Induced Choroidal Neovascularization in Rats. Methods in Molecular Biology, 2021, 2319, 77-85.	0.4	2
88	Intravitreal Administration of Stanniocalcin-1 Rescues Photoreceptor Degeneration with Reduced Oxidative Stress and Inflammation in a Porcine Model of Retinitis Pigmentosa. American Journal of Ophthalmology, 2022, 239, 230-243.	1.7	2
89	Functional and molecular evidence of adenosine A2A receptor in coronary arteriolar dilation to adenosine. Drug Development Research, 2001, 52, 350-356.	1.4	1
90	Visualization of Retinal. Methods in Molecular Biology, 2021, 2319, 111-117.	0.4	1

#	Article	IF	CITATIONS
91	Mechanism of Shear Stress-Induced Coronary Microvascular Dilation. , 2003, , 197-212.		0
92	Role of Arginaseâ€l in Capillary Tube Formation and Ischemiaâ€induced Angiogenesis. FASEB Journal, 2006, 20, .	0.2	0
93	Câ€reactive protein inhibits endotheliumâ€dependent prostacyclin synthaseâ€mediated dilation of coronary arterioles: role of peroxynitrite. FASEB Journal, 2007, 21, A1228.	0.2	0
94	Elevation of superoxide in vascular smooth muscle cells restores oxyhemoglobinâ€inhibited NOâ€mediated vasodilation. FASEB Journal, 2007, 21, A493.	0.2	0
95	Role of arginaseâ€l in VEGFâ€induced capillaryâ€like tube formation. FASEB Journal, 2007, 21, A529.	0.2	Ο
96	Acute hyperglycemia impairs NOâ€mediated endothelial function of coronary arterioles by reducing Lâ€arginine availability independent of superoxide. FASEB Journal, 2008, 22, 1152.5.	0.2	0
97	Acute retinal ischemia inhibits endotheliumâ€dependent nitric oxideâ€mediated dilation of retinal arterioles: role of endothelinâ€1 and superoxide. FASEB Journal, 2008, 22, 732.2.	0.2	0
98	Retinal arteriolar endothelial dysfunction in early stage of diabetes in porcine model. FASEB Journal, 2010, 24, 592.4.	0.2	0
99	Diabetes induces endothelial dysfunction: role of eNOS uncoupling and arginase. FASEB Journal, 2012, 26, 678.4.	0.2	0
100	PKC activation impairs endotheliumâ€dependent NOâ€mediated dilation of coronary arterioles via enhanced superoxide production from xanthine oxidase. FASEB Journal, 2012, 26, 678.3.	0.2	0
101	Cardiac Pressure Overload Elicits Coronary Circulatory Dysfunction in Mice. FASEB Journal, 2012, 26, 1055.3.	0.2	0
102	Endothelinâ€l Signaling in Coronary Arteriolar Constriction. FASEB Journal, 2012, 26, 1055.2.	0.2	0
103	Role of Myocardial Endothelinâ€Converting Enzyme in Promoting Coronary Arteriolar Constriction during Diabetes. FASEB Journal, 2018, 32, 705.4.	0.2	0
104	Hyperglycemia Enhances Constriction of Retinal Venules to Endothelinâ€1 via Activation of the Reverseâ€Mode Sodiumâ€Calcium Exchanger. FASEB Journal, 2018, 32, 710.2.	0.2	0