Athanassios Speliotis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4747347/publications.pdf

Version: 2024-02-01

104 papers

1,387 citations

331670 21 h-index 33 g-index

106 all docs

106
docs citations

106 times ranked 1965 citing authors

#	Article	IF	CITATIONS
1	TiO2/graphene composite photocatalysts for NOx removal: A comparison of surfactant-stabilized graphene and reduced graphene oxide. Applied Catalysis B: Environmental, 2016, 180, 637-647.	20.2	199
2	Novel disposable microfabricated antimony-film electrodes for adsorptive stripping analysis of trace Ni(II). Electrochemistry Communications, 2009, 11, 250-253.	4.7	58
3	Novel disposable bismuth-sputtered electrodes for the determination of trace metals by stripping voltammetry. Electrochemistry Communications, 2007, 9, 2795-2800.	4.7	57
4	Disposable mercury-free cell-on-a-chip devices with integrated microfabricated electrodes for the determination of trace nickel(II) by adsorptive stripping voltammetry. Analytica Chimica Acta, 2008, 622, 111-118.	5.4	51
5	Dye-sensitization of self-assembled titania nanotubes prepared by galvanostatic anodization of Ti sputtered on conductive glass. Nanotechnology, 2009, 20, 365601.	2.6	49
6	Mo ₂ C/graphene heterostructures: low temperature chemical vapor deposition on liquid bimetallic Sn–Cu and hydrogen evolution reaction electrocatalytic properties. Nanotechnology, 2019, 30, 125401.	2.6	44
7	Disposable lithographically fabricated bismuth microelectrode arrays for stripping voltammetric detection of trace metals. Electrochemistry Communications, 2011, 13, 391-395.	4.7	43
8	A novel microfluidic integration technology for PCB-based devices: Application to microflow sensing. Microelectronic Engineering, 2009, 86, 1382-1384.	2.4	40
9	Insight and control of the chemical vapor deposition growth parameters and morphological characteristics of graphene/Mo 2 C heterostructures over liquid catalyst. Journal of Crystal Growth, 2018, 495, 46-53.	1.5	40
10	Development, characterization, energy storage and interface dielectric properties in SrFe 12 O 19 $\!\!\!/$ epoxy nanocomposites. Polymer, 2017, 120, 73-81.	3.8	36
11	Magnetostrictive properties of amorphous and crystalline TbDyFe thin films. Sensors and Actuators A: Physical, 2003, 106, 298-301.	4.1	31
12	Brazing of carbon–carbon composites to Nimonic alloys. Journal of Materials Science, 2010, 45, 74-81.	3.7	30
13	From the second magnetization peak to peak effect. A study of superconducting properties in Nb films and MgB2bulk samples. Superconductor Science and Technology, 2004, 17, 1261-1274.	3.5	27
14	Determination of Trace Tl(I) by Anodic Stripping Voltammetry on Novel Disposable Microfabricated Bismuthâ€Film Sensors. Electroanalysis, 2010, 22, 2359-2365.	2.9	27
15	Optimization of Antibacterial Properties of "Hybrid―Metal-Sputtered Superhydrophobic Surfaces. Coatings, 2020, 10, 25.	2.6	26
16	Magneto-Dielectric Behaviour of M-Type Hexaferrite/Polymer Nanocomposites. Materials, 2018, 11, 2551.	2.9	24
17	Microstructure and magnetic properties of SmCo films. Journal of Magnetism and Magnetic Materials, 2005, 290-291, 1195-1197.	2.3	23
18	Field-effect transistors with thin ZnO as active layer for gas sensor applications. Microelectronic Engineering, 2008, 85, 1035-1038.	2.4	23

#	Article	IF	CITATIONS
19	Hard/graded exchange spring composite media based on FePt. Journal of Applied Physics, 2011, 109, .	2.5	23
20	Investigating the Effect of Zn Ferrite Nanoparticles on the Thermomechanical, Dielectric and Magnetic Properties of Polymer Nanocomposites. Materials, 2019, 12, 3015.	2.9	23
21	A novel microfabrication technology on organic substrates – application to a thermal flow sensor. Journal of Physics: Conference Series, 2007, 92, 012046.	0.4	21
22	Flexible Microfabricated Film Sensors for the in Situ Quantum Dot-Based Voltammetric Detection of DNA Hybridization in Microwells. Analytical Chemistry, 2015, 87, 853-857.	6.5	21
23	Insights into the passivation effect of atomic layer deposited hafnium oxide for efficiency and stability enhancement in organic solar cells. Journal of Materials Chemistry C, 2018, 6, 8051-8059.	5.5	20
24	Microstructure and magnetic properties of (0 01) textured L10 FePt films on amorphous glass substrate. Applied Surface Science, 2015, 337, 118-124.	6.1	19
25	Organic solar cells of enhanced efficiency and stability using zinc oxide:zinc tungstate nanocomposite as electron extraction layer. Organic Electronics, 2019, 71, 227-237.	2.6	18
26	Joining of Cf/SiC Ceramics to Nimonic Alloys. Journal of Materials Engineering and Performance, 2012, 21, 683-689.	2.5	17
27	Solution-processed nanostructured zinc oxide cathode interfacial layers for efficient inverted organic photovoltaics. Microelectronic Engineering, 2014, 119, 100-104.	2.4	17
28	Magnetic properties of nanomagnetic and biomagnetic systems analyzed using cantilever magnetometry. Nanotechnology, 2011, 22, 285715.	2.6	16
29	Extraordinary magnetization of amorphous TbDyFe films. Microelectronic Engineering, 2013, 112, 183-187.	2.4	16
30	Tin-film mini-sensors fabricated by a thin-layer microelectronic approach for stripping voltammetric determination of trace metals. Electrochemistry Communications, 2014, 38, 96-99.	4.7	16
31	Oxidation behaviour of SiC coatings. Applied Physics A: Materials Science and Processing, 2008, 92, 387-395.	2.3	15
32	Interfacial Properties of ALD-Deposited Al2O3/p-Type Germanium MOS Structures: Influence of Oxidized Ge Interfacial Layer Dependent on Al2O3 Thickness. ECS Solid State Letters, 2012, 1, P32-P34.	1.4	15
33	Fe + ion irradiation induced changes in structural and magnetic properties of iron films. Nuclear Materials and Energy, 2016, 9, 459-464.	1.3	15
34	Probing the magnetoelectric response and energy efficiency in Fe3O4/epoxy nanocomposites. Polymer Testing, 2020, 88, 106560.	4.8	15
35	Dehydration of molybdenum oxide hole extraction layers via microwave annealing for the improvement of efficiency and lifetime in organic solar cells. Journal of Materials Chemistry C, 2016, 4, 7683-7694.	5.5	13
36	Nd-Fe-B thick films prepared by screen printing. IEEE Transactions on Magnetics, 2005, 41, 3901-3903.	2.1	12

#	Article	IF	CITATIONS
37	Micro-motor with screen-printed rotor magnets. Journal of Magnetism and Magnetic Materials, 2007, 316, e120-e123.	2.3	12
38	Experimental investigation of metallic thin film modification of nickel substrates for chemical vapor deposition growth of single layer graphene at low temperature. Applied Surface Science, 2016, 385, 554-561.	6.1	12
39	Carbon nanotube Schottky type photodetectors for UV applications. Solid-State Electronics, 2019, 151, 27-35.	1.4	12
40	Magnetic anisotropy phase-graded A1/L1 0 -FePt films on amorphous glass substrates. Materials and Design, 2017, 123, 147-153.	7.0	11
41	Evaluating the multifunctional performance of polymer matrix nanodielectrics incorporating magnetic nanoparticles: A comparative study. Polymer, 2021, 236, 124311.	3.8	10
42	Multitasking Performance of Fe3O4/BaTiO3/Epoxy Resin Hybrid Nanocomposites. Materials, 2022, 15, 1784.	2.9	10
43	Polarity of anomalous Hall effect hysteresis loops in [Ptâ^•Co]15â^•AFâ^•[Coâ^•Pt]15 (AF=FeMn, NiO) multilayers with perpendicular anisotropy. Journal of Applied Physics, 2005, 97, 013901.	2.5	9
44	High Layer Uniformity of Two-Dimensional Materials Demonstrated Surprisingly from Broad Features in Surface Electron Diffraction. Journal of Physical Chemistry Letters, 2020, 11, 8937-8943.	4.6	9
45	Effect of post deposition annealing on the hysteresis loops of sputtered NdFeB films. Journal of Magnetism and Magnetic Materials, 2004, 272-276, E877-E879.	2.3	8
46	Magnetotransport properties of cobalt-iron pyrite films. Thin Solid Films, 2008, 516, 2078-2081.	1.8	8
47	Disposable micro-fabricated electrochemical bismuth sensors for the determination of Tl(I) by stripping voltammetry. Procedia Chemistry, 2009, 1, 1039-1042.	0.7	8
48	Electronic band structure imaging of three layer twisted graphene on single crystal Cu(111). Applied Physics Letters, 2013, 103, 213108.	3.3	8
49	Structural and magnetic properties of L10/A1, FePt nanocomposites. Journal of Magnetism and Magnetic Materials, 2013, 325, 75-81.	2.3	8
50	Fabrication and high-resolution electron microscopy study of FePt L1 ₀ /A1 graded exchange spring media. Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 1305-1310.	1.8	8
51	Effect of ZnO Nanoparticles on the Dielectric/Electrical and Thermal Properties of Epoxy-Based Nanocomposites. Science of Advanced Materials, 2015, 7, 588-597.	0.7	8
52	Aqueous base developable: easy stripping, high aspect ratio negative photoresist for optical and proton beam lithography. Microsystem Technologies, 2008, 14, 1423-1428.	2.0	7
53	Disposable microfabricated bismuth microelectrode arrays for trace metal analysis by stripping voltammetry. Procedia Engineering, 2011, 25, 880-883.	1.2	7
54	High performance $n+/p$ and $p+/n$ germanium diodes at low-temperature activation annealing. Microelectronic Engineering, 2011, 88, 254-261.	2.4	7

#	Article	IF	CITATIONS
55	Nanometer-Thick Bismuth Nanocrystal Films for Sensoric Applications. ACS Applied Nano Materials, 2020, 3, 9669-9678.	5.0	7
56	Characteristics of MOS diodes fabricated using sputter-deposited W or Cu/W films. Microelectronic Engineering, 2006, 83, 1434-1437.	2.4	6
57	Effect of deposition pressure and post deposition annealing on SmCo thin film properties. Physica Status Solidi C: Current Topics in Solid State Physics, 2008, 5, 3759-3762.	0.8	6
58	Deposition of hard magnetic SmCo5thin films by magnetron sputtering. Journal of Physics: Conference Series, 2005, 10, 175-177.	0.4	5
59	Ledge-type Co/L1-FePt exchange-coupled composites. Journal of Applied Physics, 2016, 119, .	2.5	5
60	ZnO nanorod growth based on a low-temperature silicon-compatible combinatorial method. Physica Status Solidi C: Current Topics in Solid State Physics, 2008, 5, 3809-3812.	0.8	4
61	TiO2 Affinity Chromatography Microcolumn on Si Substrates for Phosphopeptide Analysis. Procedia Engineering, 2011, 25, 717-720.	1.2	4
62	Phosphopeptide enrichment and separation in an affinity microcolumn on a silicon microchip: Comparison of sputtered and wet-deposited TiO2 stationary-phase. Sensors and Actuators B: Chemical, 2013, 188, 1073-1079.	7.8	4
63	Graphite-Nimonic Alloy Brazing. Advanced Materials Research, 0, 59, 209-213.	0.3	3
64	Incoherent interaction of propagating spin waves with precessing magnetic moments. Physical Review B, 2010, 81, .	3.2	3
65	Scaling of Hall coefficient in Co-Bi granular thin films. EPJ Web of Conferences, 2013, 40, 12002.	0.3	3
66	Anomalous Hall Effect in a Magnetic Topological Insulator (BiMn) ₂ Te ₃ . IEEE Transactions on Magnetics, 2019, 55, 1-6.	2.1	3
67	A UV photodetector based on ordered free standing MWCNT. Journal of Instrumentation, 2020, 15, C01015-C01015.	1.2	3
68	Preparation of Nd-Fe-B Magnets by Screen Printing. Journal of Iron and Steel Research International, 2006, 13, 405-410.	2.8	2
69	Magneto-transport properties of [Co/Bi]n wire structures. Journal of Magnetism and Magnetic Materials, 2008, 320, e720-e724.	2.3	2
70	Growth and characterization of uniform ZnO films as piezoelectric materials using a hydrothermal growth technique. Proceedings of SPIE, 2011, , .	0.8	2
71	Notation="TeX">\$_{80}\$ Fe <formula formulatype="inline"><tex Notation="TeX">\$_{20}\$</tex </formula> /lr <formula formulatype="inline"><tex Notation="TeX">\$_{20}\$</tex </formula> Mn <formula formulatype="inline"><tex Notation="TeX">\$_{80}\$</tex </formula> Souare Elements, IEEE Magnetics Letters, 2012, 3,	1.1	2
72	3500204-3500204. Development and characterization of multifunctional yttrium iron garnet/epoxy nanodielectrics. Journal of Thermal Analysis and Calorimetry, 2020, 142, 1701-1708.	3.6	2

#	Article	IF	Citations
73	Structural and magnetotransport characterization of magnetron sputtered co-doped Bi2Te3 thin films. Journal of Magnetism and Magnetic Materials, 2020, 511, 166971.	2.3	2
74	Magnetization Process in Vortex-imprinted Ni ₈₀ Square Elements. Journal of Magnetics, 2011, 16, 83-87.	0.4	2
75	Micrometer thick Sm-Co films for applications on flexible systems. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2022, 280, 115691.	3.5	2
76	Implementation of hard magnetic thin films on suspended cantilevers for electromagnetic energy harvesters. , 2007, , .		1
77	Exchange bias in ferromagnetic–antiferromagnetic submicron structures. Microelectronic Engineering, 2007, 84, 1536-1539.	2.4	1
78	Large magnetoresistance in [Co(1nm)/Bi(2.5nm)]10 line structures. Microelectronic Engineering, 2009, 86, 1050-1053.	2.4	1
79	Tailoring exchange bias in magnetic nanostructures. Microelectronic Engineering, 2009, 86, 1063-1066.	2.4	1
80	Current pulse induced toggle switching of dual-vortex magnetization in Ni80Fe20/Cu/Co nanopillar element. Journal of Applied Physics, 2012, 112 , .	2.5	1
81	Magnetic and magnetoelastic properties of the TbDyFeCo system. Microelectronic Engineering, 2012, 90, 149-151.	2.4	1
82	Quantum interference effects in [Co/Bi]nthin films. EPJ Web of Conferences, 2014, 75, 01002.	0.3	1
83	Scaling of magnetotransport properties in granular $Co(c=0.8)Bi(1\hat{a}^{\circ}c)$ thin films. Applied Surface Science, 2015, 334, 45-51.	6.1	1
84	MANOS performance dependence on ALD Al2O3 oxidation source. Microelectronic Engineering, 2016, 159, 127-131.	2.4	1
85	Magnetic nanoparticles – polymer matrix nanodielectrics: Manufacturing, characterization and functionality. Materials Today: Proceedings, 2018, 5, 27491-27499.	1.8	1
86	Villari magnetomechanical coupling at hcp-Cobalt thin films on flexible substrates. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 264, 114945.	3.5	1
87	Magneto-Electric Response and Functionality in Barium Ferrite/Barium Titanate/Epoxy Resin Nanocomposites. Journal of Advanced Physics, 2017, 6, 69-75.	0.4	1
88	Magnetic-field-free spin–orbit torque-driven magnetization dynamics in CoFeB/β-W-based nanoelements. AIP Advances, 2022, 12, .	1.3	1
89	Extraordinary Hall effect in (, FeMn) multilayers with perpendicular anisotropy. Journal of Magnetism and Magnetic Materials, 2005, 290-291, 1056-1058.	2.3	0
90	Thermal Characterization of Porous Silicon Micro-Hotplates using IR Thermography., 2007,,.		0

#	Article	IF	CITATIONS
91	Effect of magnetic field on metal–insulator transitions in Bi-wire structures. Microelectronic Engineering, 2007, 84, 1528-1531.	2.4	0
92	Evaluation of a gas flow sensor implemented on organic substrate. Physica Status Solidi C: Current Topics in Solid State Physics, 2008, 5, 3839-3842.	0.8	0
93	Efficient infrared emission from patterned thin metal films on a Si photonic crystal. Physica Status Solidi (A) Applications and Materials Science, 2008, 205, 2581-2584.	1.8	0
94	Efficient infrared emission from periodically patterned thin metal films on a Si photonic crystal. Microelectronic Engineering, 2008, 85, 1112-1115.	2.4	0
95	Large asymmetries of magnetoresistance loops in Co-line structures. Microelectronic Engineering, 2008, 85, 1382-1385.	2.4	0
96	$\label{lem:metal-induced} Metal-induced low temperature activation and La< inf> 2< linf> 0< inf> 3< linf> passivation of germanium N< sup> +< lsup> lntinf> l$		0
97	Initial Stages of Thermally and Hot-Wire Assisted CVD Copper on SiLK® and LTO Substrates Activated with Mercaptopropyl Triethoxysilane Self-Assembled Monolayers. ECS Transactions, 2009, 25, 893-899.	0.5	0
98	Exchange bias and negative magnetoresistance in [Co/Bi/Co]/IrMn thin films]. Journal of Magnetism and Magnetic Materials, 2010, 322, 65-68.	2.3	0
99	Fluorescence enhancement from plasmonic Au templates. Microelectronic Engineering, 2011, 88, 1845-1848.	2.4	0
100	Influence of thermal oxidation on the interfacial properties of ultrathin strained silicon layers. Thin Solid Films, 2011, 519, 5456-5463.	1.8	0
101	Study of microstructure and magnetic properties of L10FePt/SiO2thin films. EPJ Web of Conferences, 2014, 75, 06014.	0.3	0
102	Microwave exposure as a fast and cost-effective alternative of oxygen plasma treatment of indium-tin oxide electrode for application in organic solar cells. Journal Physics D: Applied Physics, 2017, 50, 505105.	2.8	0
103	Magnetotransport properties of nanogranular Bi and Co(c=0.2)Bi(1-c) thin films. Journal of Physics: Conference Series, 2017, 903, 012037.	0.4	0
104	Coherent Magnetization Dynamics in Ni80Fe20 Thin Films Incorporated in Fe/Au Spintronic Terahertz Emitters. IEEE Transactions on Magnetics, 2021, 57, 1-4.	2.1	0