Bryan A Krantz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4746929/publications.pdf

Version: 2024-02-01

50 papers 4,444 citations

33 h-index 205818 48 g-index

51 all docs

51 docs citations

51 times ranked

4575 citing authors

#	Article	IF	CITATIONS
1	Rapid induction of inflammatory lipid mediators by the inflammasome in vivo. Nature, 2012, 490, 107-111.	13.7	399
2	Substrate Specificity of Deubiquitinating Enzymes: Ubiquitin C-Terminal Hydrolasesâ€. Biochemistry, 1998, 37, 3358-3368.	1.2	381
3	Pyroptosis triggers pore-induced intracellular traps (PITs) that capture bacteria and lead to their clearance by efferocytosis. Journal of Experimental Medicine, 2016, 213, 2113-2128.	4.2	302
4	A Phenylalanine Clamp Catalyzes Protein Translocation Through the Anthrax Toxin Pore. Science, 2005, 309, 777-781.	6.0	270
5	In vivo disassembly of free polyubiquitin chains by yeast Ubp14 modulates rates of protein degradation by the proteasome. EMBO Journal, 1997, 16, 4826-4838.	3.5	211
6	The Protective Antigen Component of Anthrax Toxin Forms Functional Octameric Complexes. Journal of Molecular Biology, 2009, 392, 614-629.	2.0	206
7	Protein Translocation through the Anthrax Toxin Transmembrane Pore is Driven by a Proton Gradient. Journal of Molecular Biology, 2006, 355, 968-979.	2.0	171
8	Hijacking Multivesicular Bodies Enables Long-Term and Exosome-Mediated Long-Distance Action of Anthrax Toxin. Cell Reports, 2013, 5, 986-996.	2.9	171
9	Fast and Slow Intermediate Accumulation and the Initial Barrier Mechanism in Protein Folding. Journal of Molecular Biology, 2002, 324, 359-371.	2.0	156
10	Binding Stoichiometry and Kinetics of the Interaction of a Human Anthrax Toxin Receptor, CMG2, with Protective Antigen. Journal of Biological Chemistry, 2004, 279, 23349-23356.	1.6	149
11	Distinguishing between Two-State and Three-State Models for Ubiquitin Foldingâ€. Biochemistry, 2000, 39, 11696-11701.	1.2	131
12	Acid-induced Unfolding of the Amino-terminal Domains of the Lethal and Edema Factors of Anthrax Toxin. Journal of Molecular Biology, 2004, 344, 739-756.	2.0	130
13	Early Collapse is not an Obligate Step in Protein Folding. Journal of Molecular Biology, 2004, 338, 369-382.	2.0	128
14	Engineered metal binding sites map the heterogeneous folding landscape of a coiled coil. Nature Structural Biology, 2001, 8, 1042-1047.	9.7	116
15	Discerning the Structure and Energy of Multiple Transition States in Protein Folding using l´-Analysis. Journal of Molecular Biology, 2004, 337, 463-475.	2.0	112
16	Effects of supercharging reagents on noncovalent complex structure in electrospray ionization from aqueous solutions. Journal of the American Society for Mass Spectrometry, 2010, 21, 1762-1774.	1.2	106
17	Structural basis for the unfolding of anthrax lethal factor by protective antigen oligomers. Nature Structural and Molecular Biology, 2010, 17, 1383-1390.	3.6	104
18	Differences in the folding transition state of ubiquitin indicated by \hat{A} and \hat{A} analyses. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 17377-17382.	3.3	97

#	Article	IF	CITATIONS
19	D/H amide kinetic isotope effects reveal when hydrogen bonds form during protein folding. Nature Structural Biology, 2000, 7, 62-71.	9.7	92
20	Supercharging Protein Complexes from Aqueous Solution Disrupts their Native Conformations. Journal of the American Society for Mass Spectrometry, 2012, 23, 191-200.	1.2	75
21	The unfolding story of anthrax toxin translocation. Molecular Microbiology, 2011, 80, 588-595.	1.2	68
22	Understanding protein hydrogen bond formation with kinetic H/D amide isotope effects. Nature Structural Biology, 2002, 9, 458-463.	9.7	66
23	Laboratory evolution of artificially expanded DNA gives redesignable aptamers that target the toxic form of anthrax protective antigen. Nucleic Acids Research, 2016, 44, gkw890.	6.5	63
24	Lethal factor unfolding is the most force-dependent step of anthrax toxin translocation. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 21555-21560.	3.3	59
25	Ratcheting up protein translocation with anthrax toxin. Protein Science, 2012, 21, 606-624.	3.1	59
26	Role of the Protective Antigen Octamer in the Molecular Mechanism of Anthrax Lethal Toxin Stabilization in Plasma. Journal of Molecular Biology, 2010, 399, 741-758.	2.0	58
27	Characterizing the Protein Folding Transition State Using $\ddot{\Gamma}$ Analysis. Chemical Reviews, 2006, 106, 1862-1876.	23.0	54
28	The role of conformational flexibility on protein supercharging in native electrospray ionization. Physical Chemistry Chemical Physics, 2011, 13, 18288.	1.3	48
29	Contribution of Hydrogen Bonding to Protein Stability Estimated from Isotope Effectsâ€. Biochemistry, 2002, 41, 2120-2129.	1.2	47
30	Anthrax toxin complexes: heptameric protective antigen can bind lethal factor and edema factor simultaneously. Biochemical and Biophysical Research Communications, 2004, 322, 258-262.	1.0	45
31	Anthrax Toxin Receptor Drives Protective Antigen Oligomerization and Stabilizes the Heptameric and Octameric Oligomer by a Similar Mechanism. PLoS ONE, 2010, 5, e13888.	1.1	39
32	Whole-cell Voltage Clamp Measurements of Anthrax Toxin Pore Current. Journal of Biological Chemistry, 2005, 280, 39417-39422.	1.6	33
33	Charge Requirements for Proton Gradient-driven Translocation of Anthrax Toxin. Journal of Biological Chemistry, 2011, 286, 23189-23199.	1.6	33
34	Electrostatic Ratchet in the Protective Antigen Channel Promotes Anthrax Toxin Translocation. Journal of Biological Chemistry, 2012, 287, 43753-43764.	1.6	33
35	Low-Zpolymer sample supports for fixed-target serial femtosecond X-ray crystallography. Journal of Applied Crystallography, 2015, 48, 1072-1079.	1.9	32
36	Peptide- and proton-driven allosteric clamps catalyze anthrax toxin translocation across membranes. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 9611-9616.	3.3	28

3

#	Article	IF	CITATIONS
37	Atomic structures of anthrax toxin protective antigen channels bound to partially unfolded lethal and edema factors. Nature Communications, 2020, 11, 840.	5.8	28
38	Domain Flexibility Modulates the Heterogeneous Assembly Mechanism of Anthrax Toxin Protective Antigen. Journal of Molecular Biology, 2012, 415, 159-174.	2.0	26
39	Interaction of the 20 kDa and 63 kDa Fragments of Anthrax Protective Antigen: Kinetics and Thermodynamicsâ€. Biochemistry, 2005, 44, 1047-1053.	1.2	23
40	Assembly and Disassembly Kinetics of Anthrax Toxin Complexes. Biochemistry, 2006, 45, 2380-2386.	1.2	21
41	Role of the α Clamp in the Protein Translocation Mechanism of Anthrax Toxin. Journal of Molecular Biology, 2015, 427, 3340-3349.	2.0	14
42	Anthrax toxin protective antigen integrates poly- \hat{l}^3 - $\langle scp \rangle d \langle scp \rangle$ -glutamate and pH signals to sense the optimal environment for channel formation. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 18378-18383.	3.3	13
43	Characterizing Protein Folding Transition States Using Îʿ-Analysis. , 2007, 350, 83-104.		12
44	Secondary Structure Preferences of the Anthrax Toxin Protective Antigen Translocase. Journal of Molecular Biology, 2017, 429, 753-762.	2.0	9
45	Dynamic Phenylalanine Clamp Interactions Define Single-Channel Polypeptide Translocation through the Anthrax Toxin Protective Antigen Channel. Journal of Molecular Biology, 2017, 429, 900-910.	2.0	8
46	Atomic Structures of Anthrax Prechannel Bound with Full-Length Lethal and Edema Factors. Structure, 2020, 28, 879-887.e3.	1.6	8
47	Peptide Probes Reveal a Hydrophobic Steric Ratchet in the Anthrax Toxin Protective Antigen Translocase. Journal of Molecular Biology, 2015, 427, 3598-3606.	2.0	4
48	Reply to Yamini and Nestorovich: Alternate clamped states of the anthrax toxin protective antigen channel. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E2547.	3.3	3
49	Anthrax Toxin Protective Antigen Forms an Unusual Channel That Unfolds and Translocates Proteins Across Membranes. Springer Series in Biophysics, 2015, , 209-240.	0.4	3
50	Anthrax lethal toxin co-complexes are stabilized by contacts between adjacent lethal factors. Journal of General Physiology, 2016, 148, 273-275.	0.9	0