Hagen Telg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4746769/publications.pdf

Version: 2024-02-01

361413 302126 1,947 40 20 39 citations h-index g-index papers 40 40 40 2825 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A Novel Networkâ€Based Approach to Determining Measurement Representation Error for Model Evaluation of Aerosol Microphysical Properties. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	3.3	3
2	Assessing the vertical structure of Arctic aerosols using balloon-borne measurements. Atmospheric Chemistry and Physics, 2021, 21, 1737-1757.	4.9	25
3	Processes contributing to cloud dissipation and formation events on the North Slope of Alaska. Atmospheric Chemistry and Physics, 2021, 21, 4149-4167.	4.9	3
4	Persistent Stratospheric Warming Due to 2019–2020 Australian Wildfire Smoke. Geophysical Research Letters, 2021, 48, e2021GL092609.	4.0	58
5	Performance Assessment of Portable Optical Particle Spectrometer (POPS). Sensors, 2020, 20, 6294.	3.8	11
6	Resonance Raman signature of intertube excitons in compositionally-defined carbon nanotube bundles. Nature Communications, 2018, 9, 637.	12.8	16
7	A Closure Study of Total Scattering Using Airborne In Situ Measurements from the Winter Phase of TCAP. Atmosphere, 2018, 9, 228.	2.3	2
8	A Bird's-Eye View: Development of an Operational ARM Unmanned Aerial Capability for Atmospheric Research in Arctic Alaska. Bulletin of the American Meteorological Society, 2018, 99, 1197-1212.	3.3	46
9	A practical set of miniaturized instruments for vertical profiling of aerosol physical properties. Aerosol Science and Technology, 2017, 51, 715-723.	3.1	16
10	Efficient transport of tropospheric aerosol into the stratosphere via the Asian summer monsoon anticyclone. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 6972-6977.	7.1	106
11	The Pilatus unmanned aircraft system for lower atmospheric research. Atmospheric Measurement Techniques, 2016, 9, 1845-1857.	3.1	28
12	Persistent Water–Nitric Acid Condensate with Saturation Water Vapor Pressure Greater than That of Hexagonal Ice. Journal of Physical Chemistry A, 2016, 120, 1431-1440.	2.5	9
13	A miniature scanning sun photometer for vertical profiles and mobile platforms. Aerosol Science and Technology, 2016, 50, 11-16.	3.1	5
14	A light-weight, high-sensitivity particle spectrometer for PM2.5 aerosol measurements. Aerosol Science and Technology, 2016, 50, 88-99.	3.1	71
15	Asymmetric excitation profiles in the resonance Raman response of armchair carbon nanotubes. Physical Review B, 2015, 91, .	3.2	24
16	Diameter dependence of TO phonon frequencies and the Kohn anomaly in armchair single-wall carbon nanotubes. Physical Review B, 2014, 90, .	3.2	5
17	Ultrafast Generation of Fundamental and Multiple-Order Phonon Excitations in Highly Enriched (6,5) Single-Wall Carbon Nanotubes. Nano Letters, 2014, 14, 1426-1432.	9.1	31
18	Recent developments in the photophysics of single-walled carbon nanotubes for their use as active and passive material elements in thin film photovoltaics. Physical Chemistry Chemical Physics, 2013, 15, 14896.	2.8	102

#	Article	IF	CITATIONS
19	Resonance behavior of the defect-induced Raman mode of single-chirality enriched carbon nanotubes. Physical Review B, 2013, 87, .	3.2	15
20	Excitonic resonances in WS <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow></mml:mrow><mml:mn>2</mml:mn></mml:msub></mml:math> nanotubes. Physical Review B, 2012, 86, .	3.2	45
21	Quantum Interference between the Third and Fourth Exciton States in Semiconducting Carbon Nanotubes Using Resonance Raman Spectroscopy. Physical Review Letters, 2012, 108, 117404.	7.8	20
22	Chiral Index Dependence of the <i>G</i> ⁺ and <i>G</i> ^{â€"} Raman Modes in Semiconducting Carbon Nanotubes. ACS Nano, 2012, 6, 904-911.	14.6	85
23	Dielectric screening effects on transition energies in aligned carbon nanotubes. Physical Review B, 2012, 85, .	3.2	17
24	Temperature dependent band gap behavior and excitons in metallic carbon nanotubes. Physica Status Solidi (B): Basic Research, 2010, 247, 3006-3009.	1.5	0
25	Raman intensities of the radial-breathing mode in carbon nanotubes: the exciton-phonon coupling as a function of $(n1, n2)$. Journal of Nanophotonics, 2010, 4, 041660.	1.0	7
26	Observation of excitonic effects in metallic single-walled carbon nanotubes. Physical Review B, 2010, 82, .	3.2	20
27	Longitudinal Optical Phonons in Metallic and Semiconducting Carbon Nanotubes. Physical Review Letters, 2009, 102, 075501.	7.8	61
28	Acetylene: A Key Growth Precursor for Single-Walled Carbon Nanotube Forests. Journal of Physical Chemistry C, 2009, 113, 17321-17325.	3.1	120
29	Use of carbon nanotubes for VLSI interconnects. Diamond and Related Materials, 2009, 18, 957-962.	3.9	54
30	Carbon nanotubes for interconnects in VLSI integrated circuits. Physica Status Solidi (B): Basic Research, 2008, 245, 2303-2307.	1.5	11
31	G [–] and G ⁺ in the Raman spectrum of isolated nanotube: a study on resonance conditions and lineshape. Physica Status Solidi (B): Basic Research, 2008, 245, 2189-2192.	1.5	28
32	Growth and characterization of high-density mats of single-walled carbon nanotubes for interconnects. Applied Physics Letters, 2008, 93, 163111.	3.3	55
33	First and second optical transitions in singleâ€walled carbon nanotubes: a resonant Raman study. Physica Status Solidi (B): Basic Research, 2007, 244, 4006-4010.	1.5	6
34	Raman intensities of the first optical transitions in carbon nanotubes. Physica Status Solidi (B): Basic Research, 2006, 243, 3181-3185.	1.5	5
35	Resonant-Raman intensities and transition energies of the E 11 transition in carbon nanotubes. Physical Review B, 2006, 74, .	3.2	36
36	Radial breathing mode of single-walled carbon nanotubes: Optical transition energies and chiral-index assignment. Physical Review B, 2005, 72, .	3.2	323

HAGEN TELG

#	Article	IF	CITATIONS
37	Chirality assignments in carbon nanotubes based on resonant Raman scattering. Physica Status Solidi (B): Basic Research, 2005, 242, 1802-1806.	1.5	15
38	Strength of radial breathing mode in single-walled carbon nanotubes. Physical Review B, 2005, 71, .	3.2	109
39	Chirality Distribution and Transition Energies of Carbon Nanotubes. Physical Review Letters, 2004, 93, 177401.	7.8	339
40	Cathodoluminescence Efficiency Dependence on Excitation Density in n-Type Gallium Nitride. Microscopy and Microanalysis, 2003, 9, 144-151.	0.4	15