
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4746719/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Influence of Age and Genetic Background on Ethanol Intake and Behavioral Response Following Ethanol Consumption and During Abstinence in a Model of Alcohol Abuse. Frontiers in Behavioral Neuroscience, 2022, 16, 858940.	2.0	1
2	Genes Implicated in Familial Parkinson's Disease Provide a Dual Picture of Nigral Dopaminergic Neurodegeneration with Mitochondria Taking Center Stage. International Journal of Molecular Sciences, 2021, 22, 4643.	4.1	12
3	Involvement of the Protein Ras Homolog Enriched in the Striatum, Rhes, in Dopaminergic Neurons' Degeneration: Link to Parkinson's Disease. International Journal of Molecular Sciences, 2021, 22, 5326.	4.1	4
4	Neuroinflammation and L-dopa-induced abnormal involuntary movements in 6-hydroxydopamine-lesioned rat model of Parkinson's disease are counteracted by combined administration of a 5-HT1A/1B receptor agonist and A2A receptor antagonist. Neuropharmacology, 2021, 196, 108693.	4.1	13
5	Protective Agents in Parkinson's Disease: Caffeine and Adenosine A2A Receptor Antagonists. , 2021, , 1-24.		0
6	Pharmacological interactions between adenosine A2A receptor antagonists and different neurotransmitter systems. Parkinsonism and Related Disorders, 2020, 80, S37-S44.	2.2	7
7	Gender Differences in Neurodegeneration, Neuroinflammation and Na+-Ca2+ Exchangers in the Female A53T Transgenic Mouse Model of Parkinson's Disease. Frontiers in Aging Neuroscience, 2020, 12, 118.	3.4	17
8	Fos expression induced by olanzapine and risperidone in the central extended amygdala. European Journal of Pharmacology, 2019, 865, 172764.	3.5	3
9	Lack of Rhes Increases MDMA-Induced Neuroinflammation and Dopamine Neuron Degeneration: Role of Gender and Age. International Journal of Molecular Sciences, 2019, 20, 1556.	4.1	19
10	Role of adenosine A2A receptors in motor control: relevance to Parkinson's disease and dyskinesia. Journal of Neural Transmission, 2018, 125, 1273-1286.	2.8	33
11	Dopaminergic neurodegeneration in a rat model of long-term hyperglycemia: preferential degeneration of the nigrostriatal motor pathway. Neurobiology of Aging, 2018, 69, 117-128.	3.1	36
12	NCX1 and NCX3 as potential factors contributing to neurodegeneration and neuroinflammation in the A53T transgenic mouse model of Parkinson's Disease. Cell Death and Disease, 2018, 9, 725.	6.3	32
13	Rhes Counteracts Dopamine Neuron Degeneration and Neuroinflammation Depending on Gender and Age. Frontiers in Aging Neuroscience, 2018, 10, 163.	3.4	7
14	Control of Motor Function by Adenosine A 2A Receptors in Parkinson's and Huntington's Disease. , 2017, , 187-213.		1
15	Antidyskinetic effect of A _{2A} and 5HT _{1A/1B} receptor ligands in two animal models of Parkinson's disease. Movement Disorders, 2016, 31, 501-511.	3.9	36
16	The <scp>S</scp> mall <scp>GTP</scp> â€ <scp>B</scp> inding <scp>P</scp> rotein <scp>R</scp> hes <scp>I</scp> nfluences <scp>N</scp> igrostriatalâ€ <scp>D</scp> ependent <scp>M</scp> otor <scp>B</scp> ehavior <scp>D</scp> uring <scp>A</scp> ging. Movement Disorders, 2016, 31, 583-589.	3.9	14
17	Novel (Hetero)arylalkenyl propargylamine compounds are protective in toxin-induced models of Parkinson's disease. Molecular Neurodegeneration, 2016, 11, 6.	10.8	55
18	Dual target strategy: combining distinct nonâ€dopaminergic treatments reduces neuronal cell loss and synergistically modulates <scp>l</scp> â€ <scp>DOPA</scp> â€induced rotational behavior in a rodent model of Parkinson's disease. Journal of Neurochemistry, 2015, 134, 740-747.	3.9	31

#	Article	IF	CITATIONS
19	Adenosine A2A Receptor Antagonists as Drugs for Symptomatic Control of Parkinson's Disease in Preclinical Studies. Current Topics in Neurotoxicity, 2015, , 127-148.	0.4	0
20	Neuroprotective Potential of Adenosine A _{2A} and Cannabinoid CB ₁ Receptor Antagonists in an Animal Model of Parkinson Disease. Journal of Neuropathology and Experimental Neurology, 2014, 73, 414-424.	1.7	31
21	l-DOPA-treatment in primates disrupts the expression of A2A adenosine–CB1 cannabinoid–D2 dopamine receptor heteromers in the caudate nucleus. Neuropharmacology, 2014, 79, 90-100.	4.1	83
22	A Critical Evaluation of Behavioral Rodent Models of Motor Impairment Used for Screening of Antiparkinsonian Activity: The Case of Adenosine A2A Receptor Antagonists. Neurotoxicity Research, 2014, 25, 392-401.	2.7	24
23	Adenosine A2A Receptor Antagonists in Parkinson's Disease: Progress in Clinical Trials from the Newly Approved Istradefylline to Drugs in Early Development and Those Already Discontinued. CNS Drugs, 2014, 28, 455-474.	5.9	164
24	l-DOPA disrupts adenosine A2A–cannabinoid CB1–dopamine D2 receptor heteromer cross-talk in the striatum of hemiparkinsonian rats: Biochemical and behavioral studies. Experimental Neurology, 2014, 253, 180-191.	4.1	77
25	Protective Agents in Parkinson's Disease: Caffeine and Adenosine A2A Receptor Antagonists. , 2014, , 2281-2298.		1
26	MPTPâ€induced dopamine neuron degeneration and glia activation is potentiated in MDMAâ€pretreated mice. Movement Disorders, 2013, 28, 1957-1965.	3.9	47
27	Symptomatic and Neuroprotective Effects of A2A Receptor Antagonists in Parkinson's Disease. , 2013, , 361-384.		3
28	Late-onset Parkinsonism in NFÂB/c-Rel-deficient mice. Brain, 2012, 135, 2750-2765.	7.6	66
29	Pharmacological characterization of 50-kHz ultrasonic vocalizations in rats: Comparison of the effects of different psychoactive drugs and relevance in drug-induced reward. Neuropharmacology, 2012, 63, 224-234.	4.1	99
30	Past, present and future of A2A adenosine receptor antagonists in the therapy of Parkinson's disease. , 2011, 132, 280-299.		170
31	Behavioral, Neurochemical, and Electrophysiological Changes in an Early Spontaneous Mouse Model of Nigrostriatal Degeneration. Neurotoxicity Research, 2011, 20, 170-181.	2.7	12
32	Pharmacological Therapy of Parkinsons Disease: Current Options and New Avenues. Recent Patents on CNS Drug Discovery, 2010, 5, 221-238.	0.9	10
33	A new ethyladenine antagonist of adenosine A2A receptors: Behavioral andÂbiochemical characterization as an antiparkinsonian drug. Neuropharmacology, 2010, 58, 613-623.	4.1	44
34	Dyskinetic potential of dopamine agonists is associated with different striatonigral/striatopallidal zif-268 expression. Experimental Neurology, 2010, 224, 395-402.	4.1	17
35	Assessment of Symptomatic and Neuroprotective Efficacy of Mucuna Pruriens Seed Extract in Rodent Model of Parkinson's Disease. Neurotoxicity Research, 2009, 15, 111-122.	2.7	71
36	Novel investigational adenosine A _{2A} receptor antagonists for Parkinson's disease. Expert Opinion on Investigational Drugs, 2009, 18, 1619-1631.	4.1	76

#	Article	IF	CITATIONS
37	Behavioural Correlates of Dopaminergic Agonists' Dyskinetic Potential in the 6-OHDA-Lesioned Rat. Advances in Behavioral Biology, 2009, , 461-470.	0.2	0
38	Acute perinatal asphyxia impairs non-spatial memory and alters motor coordination in adult male rats. Experimental Brain Research, 2008, 185, 595-601.	1.5	45
39	Behavioral and biochemical correlates of the dyskinetic potential of dopaminergic agonists in the 6â€OHDA lesioned rat. Synapse, 2008, 62, 524-533.	1.2	40
40	Direct and indirect striatal efferent pathways are differentially influenced by low and high dyskinetic drugs: Behavioural and biochemical evidence. Parkinsonism and Related Disorders, 2008, 14, S165-S168.	2.2	18
41	Adenosine A2A Receptor Antagonists and Parkinsons Disease: State of the Art and Future Directions. Current Pharmaceutical Design, 2008, 14, 1475-1489.	1.9	72
42	Adenosine A2A receptor antagonists improve deficits in initiation of movement and sensory motor integration in the unilateral 6-hydroxydopamine rat model of Parkinson's disease. Synapse, 2007, 61, 606-614.	1.2	77
43	Expression of dyskinetic movements and turning behaviour in subchronic l-DOPA 6-hydroxydopamine-treated rats is influenced by the testing environment. Behavioural Brain Research, 2006, 171, 175-178.	2.2	38
44	S8 ADENOSINE A2A RECEPTOR ANTAGONISTS IN THE THERAPY OF PARKINSON??S DISEASE. Behavioural Pharmacology, 2006, 17, 537.	1.7	0
45	How reliable is the behavioural evaluation of dyskinesia in animal models of Parkinson??s disease?. Behavioural Pharmacology, 2006, 17, 393-402.	1.7	27
46	P14 SENSITISATION IN TURNING BEHAVIOUR AND ABNORMAL INVOLUNTARY MOVEMENTS IN 6-HYDROXYDOPAMINE LESIONED RATS: INFLUENCE OF THE ENVIRONMENT IN WHICH TESTS ARE PERFORMED Behavioural Pharmacology, 2006, 17, 545.	1.7	0
47	Subchronic-intermittent caffeine amplifies the motor effects of amphetamine in rats. Amino Acids, 2006, 31, 359-363.	2.7	14
48	Subchronic intermittent caffeine administration to unilaterally 6-hydroxydopamine-lesioned rats sensitizes turning behaviour in response to dopamine D1 but not D2 receptor agonists. Behavioural Pharmacology, 2005, 16, 621-626.	1.7	6
49	Different responsiveness of striatonigral and striatopallidal neurons to L-DOPA after a subchronic intermittent L-DOPA treatment. European Journal of Neuroscience, 2005, 21, 1196-1204.	2.6	64
50	New adenosine A2A receptor antagonists: Actions on Parkinson's disease models. European Journal of Pharmacology, 2005, 512, 157-164.	3.5	45
51	New therapies for the treatment of Parkinson's disease: Adenosine A2A receptor antagonists. Life Sciences, 2005, 77, 3259-3267.	4.3	91
52	Changes in the Expression of Tonic and Phasic Neurochemical Markers of Activity in a Rat Model of L-DOPA Induced Dyskinesia. , 2005, , 371-378.		0
53	Fate of (D-Ala2)-deltorphin-I-like immunoreactive neurons in 6-hydroxydopamine lesioned rat brain. European Journal of Histochemistry, 2004, 48, 135.	1.5	0
54	Adenosine A2A receptor antagonism increases striatal glutamate outflow in dopamine-denervated rats. European Journal of Pharmacology, 2003, 464, 33-38.	3.5	45

#	Article	IF	CITATIONS
55	Blockade of A2A receptors plus l-DOPA after nigrostriatal lesion results in GAD67 mRNA changes different from l-DOPA alone in the rat globus pallidus and substantia nigra reticulata. Experimental Neurology, 2003, 184, 679-687.	4.1	25
56	Subchronic Caffeine Exposure Induces Sensitization to Caffeine and Cross-Sensitization to Amphetamine Ipsilateral Turning Behavior Independent from Dopamine Release. Neuropsychopharmacology, 2003, 28, 1752-1759.	5.4	47
57	Adenosine A _{2A} and dopamine receptor interactions in basal ganglia of dopamine denervated rats. Neurology, 2003, 61, S39-43.	1.1	18
58	Modification of adenosine extracellular levels and adenosine A2A receptor mRNA by dopamine denervation. European Journal of Pharmacology, 2002, 446, 75-82.	3.5	71
59	Differential regulation of GAD67, enkephalin and dynorphin mRNAs by chronic-intermittentL-dopa and A2A receptor blockade plusL-Dopa in dopamine-denervated rats. Synapse, 2002, 44, 166-174.	1.2	62
60	Different Patterns of Behavior and Gene Expression Induced by Chronic L-Dopa and A2A Antagonists Plus L-Dopa Treatments in 6- Hydroxydopamine Lesioned Rats. Advances in Behavioral Biology, 2002, , 19-28.	0.2	0
61	Interaction between dopamine and adenosine A 2A receptors as a basis for the treatment of Parkinson's disease. Neurological Sciences, 2001, 22, 71-72.	1.9	61
62	Two distinct P2Y receptors are involved in purine- and pyrimidine-evoked Ca2+ elevation in mammalian brain astrocytic cultures. Drug Development Research, 2001, 52, 122-132.	2.9	4
63	Modulation by adenosine A2A receptors of dopamine-mediated motor behavior as a basis for antiparkinson?s disease drugs. Drug Development Research, 2001, 52, 387-393.	2.9	2
64	Motor stimulant effects of the adenosine A2A receptor antagonist SCH 58261 do not develop tolerance after repeated treatments in 6-hydroxydopamine-lesioned rats. Synapse, 2001, 39, 233-238.	1.2	104
65	Antidepressants and Atypical Neuroleptics Induce Fos-like Immunoreactivity in the Central Extended Amygdala. Annals of the New York Academy of Sciences, 1999, 877, 703-706.	3.8	9
66	Involvement of Adenosine A2A Receptors in the Induction of C-Fos Expression by Clozapine and Haloperidol. Neuropsychopharmacology, 1999, 20, 44-51.	5.4	62
67	Differential Induction of Fos-Like-Immunoreactivity in the Extended Amygdala after Haloperidol and Clozapine. Neuropsychopharmacology, 1999, 21, 93-100.	5.4	19
68	Induction of fos-like-immunoreactivity in the central extended amygdala by antidepressant drugs. , 1999, 31, 1-4.		46
69	Adenosine A2A receptor antagonism potentiates l-DOPA-induced turning behaviour and c-fos expression in 6-hydroxydopamine-lesioned rats. European Journal of Pharmacology, 1997, 321, 143-147.	3.5	150
70	Priming of 6-hydroxydopamine-lesioned rats with l-DOPA or quinpirole results in an increase in dopamine D1 receptor-dependent cyclic AMP production in striatal tissue. European Journal of Pharmacology, 1997, 331, 23-26.	3.5	21
71	Adenosine A2A receptor agonists increase Fos-like immunoreactivity in mesolimbic areas. Brain Research, 1997, 759, 41-49.	2.2	66
72	C-Fos expression as a molecular marker in corticotropin-releasing factor-induced seizures. , 1996, 24,		5

297-304.

#	Article	IF	CITATIONS
73	Blockade of A2aAdenosine Receptors Positively Modulates Turning Behaviour and c-Fos Expression Induced by D1Agonists in Dopamine-denervated Rats. European Journal of Neuroscience, 1996, 8, 1176-1181.	2.6	141
74	Role of vesicular dopamine in the in vivo stimulation of striatal dopamine transmission by amphetamine: Evidence from microdialysis and Fos immunohistochemistry. Neuroscience, 1995, 65, 1027-1039.	2.3	61
75	Adenosine A2 receptors stimulate c-fos expression in striatal neurons of 6-hydroxydopamine-lesioned rats. Neuroscience, 1995, 67, 49-55.	2.3	71
76	Differential effect of MK 801 and scopolamine on c-fos expression induced by L-dopa in the striatum of 6-hydroxydopamine lesioned rats. Synapse, 1994, 18, 288-293.	1.2	27
77	Adenosine A2 receptors interact negatively with dopamine D1 and D2 receptors in unilaterally 6-hydroxydopamine-lesioned rats. European Journal of Pharmacology, 1994, 251, 21-25.	3.5	93
78	l-Dopa stimulates c-fos expression in dopamine denervated striatum by combined activation of D-1 and D-2 receptors. Brain Research, 1993, 623, 334-336.	2.2	51
79	Stimulation of dopamine transmission in the dorsal caudate nucleus by pargyline as demonstrated by dopamine and acetylcholine microdialysis and Fos immunohistochemistry. Neuroscience, 1993, 55, 451-456.	2.3	28
80	Blockade of muscarinic receptors potentiates D1 dependent turning behavior and c-fos expression in 6-hydroxydopamine-lesioned rats but does not influence D2 mediated responses. Neuroscience, 1993, 53, 673-678.	2.3	49
81	Differential interaction of dopaminergic D-1 and D-2 receptors with glutamatergic, gabaergic and cholinergic transmission in the 6-hyroxydopamine model of Parkinson. Pharmacological Research, 1992, 26, 71.	7.1	0
82	Combined Microdialysis and Fos Immunohistochemistry for the Estimation of Dopamine Neurotransmission in the Rat Caudate-Putamen. Journal of Neurochemistry, 1992, 59, 1158-1160.	3.9	21
83	Blockade ofNMDA receptors differentially affectsD-1 andD-2 mediated turning behavior in the 6-hydroxydopamine model of Parkinson. Amino Acids, 1991, 1, 205-213.	2.7	2