José A Almendros-Ibáñez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/474670/publications.pdf Version: 2024-02-01

257101 315357 57 1,581 24 38 g-index citations h-index papers 57 57 57 1312 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Experimental observations on directly irradiated conical spouted and spout-fluid beds. Experimental Thermal and Fluid Science, 2022, 130, 110488.	1.5	5
2	Simulated performance of a solar-assisted heat pump system including a phase-change storage tank for residential heating applications: A case study in Madrid, Spain. Journal of Energy Storage, 2022, 47, 103615.	3.9	16
3	Experimental characterization of a double tube heat exchanger with different corrugated tubes and shells. International Journal of Thermal Sciences, 2022, 179, 107640.	2.6	8
4	Numerical simulation of the heat transfer process of a coiled tube for viscous fluids. Case Studies in Thermal Engineering, 2022, 36, 102186.	2.8	0
5	Experimental observations on directly irradiated fluidized beds: Even and uneven fluidization. Experimental Thermal and Fluid Science, 2021, 120, 110242.	1.5	13
6	Characterization and testing of solid particles to be used in CSP plants: Aging and fluidization tests. Solar Energy Materials and Solar Cells, 2021, 219, 110793.	3.0	27
7	Organic Rankine Cycle Optimization Performance Analysis Based on Super-Heater Pressure: Comparison of Working Fluids. Energies, 2021, 14, 2548.	1.6	6
8	3D numerical simulation of a directly irradiated bubbling fluidized bed with SiC particles. Applied Thermal Engineering, 2021, 190, 116812.	3.0	8
9	Influence of immersed surface shape on the heat transfer process and flow pattern in a fluidized bed using numerical simulation International Journal of Heat and Mass Transfer, 2021, 178, 121621.	2.5	5
10	Numerical simulation of a 3-D gas-solid fluidized bed: Comparison of TFM and CPFD numerical approaches and experimental validation. Advanced Powder Technology, 2021, 32, 3689-3705.	2.0	13
11	CSP on fluidized particles with a beam-down reflector: Comparative study of different fluidization technologies. Solar Energy, 2020, 200, 76-88.	2.9	14
12	Experimental study of different materials in fluidized beds with a beam-down solar reflector for CSP applications. Solar Energy, 2020, 211, 683-699.	2.9	15
13	Numerical and experimental study of the heat transfer process in a double pipe heat exchanger with inner corrugated tubes. International Journal of Thermal Sciences, 2020, 158, 106526.	2.6	51
14	Heat Transfer Performance of Fruit Juice in a Heat Exchanger Tube Using Numerical Simulations. Applied Sciences (Switzerland), 2020, 10, 648.	1.3	10
15	Integration of absorption refrigeration systems into rankine power cycles to reduce water consumption: An economic analysis. Energy, 2020, 205, 117832.	4.5	4
16	Effective thermal conductivities in packed beds: Review of correlations and its influence on system performance. Applied Thermal Engineering, 2020, 171, 115048.	3.0	42
17	Experimental characterization of a double tube heat exchanger with inserted twisted tape elements. Applied Thermal Engineering, 2020, 174, 115234.	3.0	32
18	A review of solar thermal energy storage in beds of particles: Packed and fluidized beds. Solar Energy, 2019, 192, 193-237.	2.9	114

#	Article	IF	CITATIONS
19	Inverse heat problem of determining unknown surface heat flux in a molten salt loop. International Journal of Heat and Mass Transfer, 2019, 139, 503-516.	2.5	19
20	Characterization of a triple concentric-tube heat exchanger with corrugated tubes using Artificial Neural Networks (ANN). Applied Thermal Engineering, 2019, 147, 1036-1046.	3.0	61
21	Influence of corrugation shape on heat transfer performance in corrugated tubes using numerical simulations. International Journal of Thermal Sciences, 2019, 137, 262-275.	2.6	26
22	Numerical simulation of the heat transfer process in a corrugated tube. International Journal of Thermal Sciences, 2018, 126, 125-136.	2.6	35
23	CHARACTERIZATION OF A TRIPLE CONCENTRIC-TUBE HEAT EXCHANGER WITH CORRUGATED TUBES USING ARTIFICIAL NEURAL NETWORKS (ANN). , 2018, , .		1
24	Simplified model of a dual-media molten-salt thermocline tank with a multiple layer wall. Solar Energy, 2017, 151, 146-161.	2.9	23
25	Integration of absorption refrigeration systems into Rankine power cycles to reduce water consumption: A thermodynamic analysis. Energy, 2017, 119, 1084-1097.	4.5	7
26	Modeling the Heat Transfer Coefficient Between a Surface and Fixed and Fluidized Beds With Phase Change Material. Journal of Heat Transfer, 2016, 138, .	1.2	6
27	Modeling and experiments of energy storage in a packed bed with PCM. International Journal of Multiphase Flow, 2016, 86, 1-9.	1.6	36
28	Air-based solar systems for building heating with PCM fluidized bed energy storage. Energy and Buildings, 2016, 130, 150-165.	3.1	48
29	Characterization of granular phase change materials for thermal energy storage applications in fluidized beds. Applied Energy, 2016, 181, 310-321.	5.1	14
30	Experimental study of fixed and fluidized beds of PCM with an internal heat exchanger. Applied Thermal Engineering, 2016, 106, 1042-1051.	3.0	8
31	A simplified method for modeling the thermal performance of storage tanks containing PCMs. Applied Thermal Engineering, 2016, 95, 394-410.	3.0	38
32	ε – NTU relationships in parallel–series arrangements: Application to plate and tubular heat exchangers. Applied Thermal Engineering, 2016, 99, 1119-1132.	3.0	11
33	Experimental heat transfer coefficients between a surface and fixed and fluidized beds with PCM. Applied Thermal Engineering, 2015, 78, 373-379.	3.0	26
34	Modeling and Experiments of Energy Storage in a Fluidized Bed with PCM. Procedia Engineering, 2015, 102, 877-886.	1.2	0
35	Fins with a prescribed temperature at the tip: Efficiency and effectiveness expressions. Applied Thermal Engineering, 2015, 91, 447-455.	3.0	6
36	Energy storage with PCM in fluidized beds: Modeling and experiments. Chemical Engineering Journal, 2015, 264, 497-505.	6.6	28

#	Article	IF	CITATIONS
37	Thermal simulation and system optimization of a chilled ceiling coupled with a floor containing a phase change material (PCM). Sustainable Cities and Society, 2015, 14, 154-170.	5.1	39
38	Ray Tracing of a Solar Collector Designed for Uniform Yearly Production. Energy Procedia, 2014, 57, 2221-2230.	1.8	4
39	Solar energy captured by a curved collector designed for architectural integration. Applied Energy, 2014, 116, 66-75.	5.1	22
40	Thermal design guidelines of solar power towers. Applied Thermal Engineering, 2014, 63, 428-438.	3.0	147
41	PCM in the heat rejection loops of absorption chillers. A feasibility study for the residential sector in Spain. Energy and Buildings, 2014, 80, 331-351.	3.1	20
42	Thermal energy storage in a fluidized bed of PCM. Chemical Engineering Journal, 2013, 230, 573-583.	6.6	67
43	A numerical study of external building walls containing phase change materials (PCM). Applied Thermal Engineering, 2012, 47, 73-85.	3.0	149
44	Motion of a large object in a bubbling fluidized bed with a rotating distributor. Chemical Engineering and Processing: Process Intensification, 2011, 50, 859-868.	1.8	28
45	Solid conduction effects and design criteria in moving bed heat exchangers. Applied Thermal Engineering, 2011, 31, 1200-1207.	3.0	21
46	On the pressure drop in Plate Heat Exchangers used as desorbers in absorption chillers. Energy Conversion and Management, 2011, 52, 1520-1525.	4.4	20
47	On the minimum fluidization velocity in 2D fluidized beds. Powder Technology, 2011, 207, 145-153.	2.1	42
48	Voidage distribution around bubbles in a fluidized bed: Influence on throughflow. Powder Technology, 2010, 197, 73-82.	2.1	14
49	Exergy Optimization in a Steady Moving Bed Heat Exchanger. Annals of the New York Academy of Sciences, 2009, 1161, 584-600.	1.8	7
50	Experimental observations on the different mechanisms for solid ejection in gas-fluidized beds. Chemical Engineering and Processing: Process Intensification, 2009, 48, 734-744.	1.8	20
51	Maximum entropy estimation of the bubble size distribution in fluidized beds. Chemical Engineering Science, 2009, 64, 2307-2319.	1.9	27
52	Novel Approach to Characterize Fluidized Bed Dynamics Combining Particle Image Velocimetry and Finite Element Method. Industrial & Engineering Chemistry Research, 2009, 48, 5010-5023.	1.8	5
53	Transformer Field Drying Procedures: A Theoretical Analysis. IEEE Transactions on Power Delivery, 2009, 24, 1978-1986.	2.9	29
54	Fluidization of Group B particles with a rotating distributor. Powder Technology, 2008, 181, 273-280.	2.1	27

#	Article	IF	CITATIONS
55	A new model for ejected particle velocity from erupting bubbles in 2-D fluidized beds. Chemical Engineering Science, 2006, 61, 5981-5990.	1.9	35
56	Characteristic lengths and maximum entropy estimation from probe signals in the ellipsoidal bubble regime. International Journal of Multiphase Flow, 2006, 32, 1123-1139.	1.6	21
57	Performance of a LiBr–water absorption chiller operating with plate heat exchangers. Energy Conversion and Management, 2006, 47, 3393-3407.	4.4	61