
Hak-Man Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4746347/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Microgrids as a resilience resource and strategies used by microgrids for enhancing resilience. Applied Energy, 2019, 240, 56-72.	10.1	318
2	A Multiagent-Based Hierarchical Energy Management Strategy for Multi-Microgrids Considering Adjustable Power and Demand Response. IEEE Transactions on Smart Grid, 2018, 9, 1323-1333.	9.0	282
3	A Resilient and Privacy-Preserving Energy Management Strategy for Networked Microgrids. IEEE Transactions on Smart Grid, 2018, 9, 2127-2139.	9.0	176
4	Double Deep \$Q\$ -Learning-Based Distributed Operation of Battery Energy Storage System Considering Uncertainties. IEEE Transactions on Smart Grid, 2020, 11, 457-469.	9.0	155
5	Resilience-Oriented Optimal Operation of Networked Hybrid Microgrids. IEEE Transactions on Smart Grid, 2019, 10, 204-215.	9.0	103
6	Optimal Sizing of Battery Energy Storage System in a Fast EV Charging Station Considering Power Outages. IEEE Transactions on Transportation Electrification, 2020, 6, 453-463.	7.8	103
7	Robust Optimization-Based Scheduling of Multi-Microgrids Considering Uncertainties. Energies, 2016, 9, 278.	3.1	81
8	Consensus-Based Distributed Coordination Control of Hybrid AC/DC Microgrids. IEEE Transactions on Sustainable Energy, 2020, 11, 629-639.	8.8	80
9	Optimal operation of hybrid microgrids for enhancing resiliency considering feasible islanding and survivability. IET Renewable Power Generation, 2017, 11, 846-857.	3.1	74
10	Avoiding Frequency Second Dip in Power Unreserved Control During Wind Power Rotational Speed Recovery. IEEE Transactions on Power Systems, 2018, 33, 3097-3106.	6.5	72
11	Robust Optimal Operation of AC/DC Hybrid Microgrids Under Market Price Uncertainties. IEEE Access, 2018, 6, 2654-2667.	4.2	69
12	An Intelligent Multiagent System for Autonomous Microgrid Operation. Energies, 2012, 5, 3347-3362.	3.1	63
13	A Proactive and Survivability-Constrained Operation Strategy for Enhancing Resilience of Microgrids Using Energy Storage System. IEEE Access, 2018, 6, 75495-75507.	4.2	56
14	An internal trading strategy for optimal energy management of combined cooling, heat and power in building microgrids. Applied Energy, 2019, 239, 536-548.	10.1	55
15	Optimal Energy Management of Multi-Microgrids with Sequentially Coordinated Operations. Energies, 2015, 8, 8371-8390.	3.1	54
16	Impact of Uncertainties on Resilient Operation of Microgrids: A Data-Driven Approach. IEEE Access, 2019, 7, 14924-14937.	4.2	50
17	Distributed Load-Shedding System for Agent-Based Autonomous Microgrid Operations. Energies, 2014, 7, 385-401.	3.1	39
18	Multi-Frequency Control in a Stand-Alone Multi-Microgrid System Using a Back-To-Back Converter. Energies, 2017, 10, 822.	3.1	38

Ηακ-Μαν Κιμ

#	Article	IF	CITATIONS
19	Application of Model Predictive Control to BESS for Microgrid Control. Energies, 2015, 8, 8798-8813.	3.1	36
20	Talmudic Approach to Load Shedding of Islanded Microgrid Operation Based on Multiagent System. Journal of Electrical Engineering and Technology, 2011, 6, 284-292.	2.0	36
21	A Droop Frequency Control for Maintaining Different Frequency Qualities in a Stand-Alone Multimicrogrid System. IEEE Transactions on Sustainable Energy, 2018, 9, 599-609.	8.8	34
22	Fuzzy Logic-Based Operation of Battery Energy Storage Systems (BESSs) for Enhancing the Resiliency of Hybrid Microgrids. Energies, 2017, 10, 271.	3.1	33
23	Impact of Demand Response Programs on Optimal Operation of Multi-Microgrid System. Energies, 2018, 11, 1452.	3.1	33
24	An Energy Management System With Optimum Reserve Power Procurement Function for Microgrid Resilience Improvement. IEEE Access, 2019, 7, 42577-42585.	4.2	33
25	Optimal Energy Management of Combined Cooling, Heat and Power in Different Demand Type Buildings Considering Seasonal Demand Variations. Energies, 2017, 10, 789.	3.1	30
26	An Effort-Based Reward Approach for Allocating Load Shedding Amount in Networked Microgrids Using Multiagent System. IEEE Transactions on Industrial Informatics, 2020, 16, 2268-2279.	11.3	30
27	Optimal Operation of Greenhouses in Microgrids Perspective. IEEE Transactions on Smart Grid, 2019, 10, 3474-3485.	9.0	29
28	A Flywheel Energy Storage System Based on a Doubly Fed Induction Machine and Battery for Microgrid Control. Energies, 2015, 8, 5074-5089.	3.1	27
29	Q-Learning-Based Operation Strategy for Community Battery Energy Storage System (CBESS) in Microgrid System. Energies, 2019, 12, 1789.	3.1	27
30	Optimal Operation of Microgrids Considering Auto-Configuration Function Using Multiagent System. Energies, 2017, 10, 1484.	3.1	26
31	Analyzing the Impacts of System Parameters on MPC-Based Frequency Control for a Stand-Alone Microgrid. Energies, 2017, 10, 417.	3.1	24
32	EV Prioritization and Power Allocation During Outages: A Lexicographic Method-Based Multiobjective Optimization Approach. IEEE Transactions on Transportation Electrification, 2021, 7, 2474-2487.	7.8	24
33	Optimal Operation of Networked Microgrids for Enhancing Resilience Using Mobile Electric Vehicles. Energies, 2021, 14, 142.	3.1	23
34	A Strategy for Flexible Frequency Operation of Stand-Alone Multimicrogrids. IEEE Transactions on Sustainable Energy, 2018, 9, 1636-1647.	8.8	22
35	Limitations in Energy Management Systems: A Case Study for Resilient Interconnected Microgrids. IEEE Transactions on Smart Grid, 2019, 10, 5675-5685.	9.0	22
36	Diffusion Strategy-Based Distributed Operation of Microgrids Using Multiagent System. Energies, 2017, 10, 903.	3.1	21

Ηακ-Μαν Κιμ

#	Article	IF	CITATIONS
37	Stationary Energy Storage System for Fast EV Charging Stations: Simultaneous Sizing of Battery and Converter. Energies, 2019, 12, 4516.	3.1	21
38	Impact Analysis of Survivability-Oriented Demand Response on Islanded Operation of Networked Microgrids with High Penetration of Renewables. Energies, 2019, 12, 452.	3.1	19
39	A Simplified Model of Coaxial, Multilayer High-Temperature Superconducting Power Cables with Cu Formers for Transient Studies. Energies, 2019, 12, 1514.	3.1	19
40	Impact Analysis of Demand Response Intensity and Energy Storage Size on Operation of Networked Microgrids. Energies, 2017, 10, 882.	3.1	17
41	Adaptive Robust Optimization-Based Optimal Operation of Microgrids Considering Uncertainties in Arrival and Departure Times of Electric Vehicles. Energies, 2018, 11, 2646.	3.1	17
42	Improving Transient Response of Power Converter in a Stand-Alone Microgrid Using Virtual Synchronous Generator. Energies, 2018, 11, 27.	3.1	17
43	Robustness Improvement of Superconducting Magnetic Energy Storage System in Microgrids Using an Energy Shaping Passivity-Based Control Strategy. Energies, 2017, 10, 671.	3.1	16
44	A Novel Topology of Hybrid HVDC Circuit Breaker for VSC-HVDC Application. Energies, 2017, 10, 1675.	3.1	15
45	Transfverter: Imbuing Transformer-Like Properties in an Interlink Converter for Robust Control of a Hybrid AC–DC Microgrid. IEEE Transactions on Power Electronics, 2019, 34, 11332-11341.	7.9	15
46	Distributed Operation of Wind Farm for Maximizing Output Power: A Multi-Agent Deep Reinforcement Learning Approach. IEEE Access, 2020, 8, 173136-173146.	4.2	15
47	Consensus Algorithm-Based Distributed Operation of Microgrids During Grid-Connected and Islanded Modes. IEEE Access, 2020, 8, 78151-78165.	4.2	14
48	Optimal Electric and Heat Energy Management of Multi-Microgrids with Sequentially-Coordinated Operations. Energies, 2016, 9, 473.	3.1	11
49	Welfare Maximization-Based Distributed Demand Response for Islanded Multi-Microgrid Networks Using Diffusion Strategy. Energies, 2019, 12, 3701.	3.1	11
50	Goal-Programming-Based Multi-Objective Optimization in Off-Grid Microgrids. Sustainability, 2020, 12, 8119.	3.2	11
51	Stationary Energy Storage System for Fast EV Charging Stations: Optimality Analysis and Results Validation. Energies, 2020, 13, 230.	3.1	11
52	Simplified Floating Wind Turbine for Real-Time Simulation of Large-Scale Floating Offshore Wind Farms. Energies, 2021, 14, 4571.	3.1	10
53	Cluster-Based Predictive PCC Voltage Control of Large-Scale Offshore Wind Farm. IEEE Access, 2021, 9, 4630-4641.	4.2	10
54	Optimal Operation of Wind Farm for Reducing Power Deviation Considering Grid-Code Constraints and Events. IEEE Access, 2019, 7, 139058-139068.	4.2	9

Hak-Man Kim

#	Article	IF	CITATIONS
55	Optimal Operation of Tri-Generation Microgrids Considering Demand Uncertainties. International Journal of Smart Home, 2016, 10, 131-144.	0.4	9
56	A Multi-Agent System-Based Approach for Optimal Operation of Building Microgrids with Rooftop Greenhouse. Energies, 2018, 11, 1876.	3.1	8
57	Evaluation of Multi-Objective Optimization Techniques for Resilience Enhancement of Electric Vehicles. Electronics (Switzerland), 2021, 10, 3030.	3.1	8
58	Optimized User-Friendly Transaction Time Management in the Blockchain Distributed Energy Market. IEEE Access, 2022, 10, 34731-34742.	4.2	8
59	Optimal Energy Management of Building Microgrid Networks in Islanded Mode Considering Adjustable Power and Component Outages. Energies, 2018, 11, 2351.	3.1	7
60	Deep reinforcement learning-based operation of fast charging stations coupled with energy storage system. Electric Power Systems Research, 2022, 210, 108087.	3.6	7
61	Optimal operation of static energy storage in fast-charging stations considering the trade-off between resilience and peak shaving. Journal of Energy Storage, 2022, 53, 105197.	8.1	7
62	Fault Analysis and Design of a Protection System for a Mesh Power System with a Co-Axial HTS Power Cable. Energies, 2020, 13, 220.	3.1	6
63	The effectiveness of group combined intervention using animal-assisted therapy and integrated elderly play therapy. Journal of Animal Science and Technology, 2019, 61, 371-378.	2.5	6
64	An Energy-Based Control Strategy for Battery Energy Storage Systems: A Case Study on Microgrid Applications. Energies, 2017, 10, 215.	3.1	5
65	Consensus-Based SOC Balancing of Battery Energy Storage Systems in Wind Farm. Energies, 2018, 11, 3507.	3.1	5
66	Impacts of a LVRT Control Strategy of Offshore Wind Farms on the HTS Power Cable. Energies, 2020, 13, 1194.	3.1	5
67	An Algorithm to Enhance the Profit Margin of Electric Vehicle Owners and Resilience of Multi-microgrid Using EV. Journal of Electrical Engineering and Technology, 2022, 17, 2161-2169.	2.0	5
68	Multi-Objective Optimization for Determining Trade-Off between Output Power and Power Fluctuations in Wind Farm System. Energies, 2019, 12, 4242.	3.1	4
69	Leader-Following Diffusion-Based Reactive Power Coordination and Voltage Control of Offshore Wind Farm. IEEE Access, 2020, 8, 149555-149568.	4.2	4
70	Multi-Objective Stochastic Optimization for Determining Set-Point of Wind Farm System. Sustainability, 2021, 13, 624.	3.2	4
71	Adopting the Game Theory Approach in the Blockchain-Driven Pricing Optimization of Standalone Distributed Energy Generations. IEEE Access, 2022, 10, 47154-47168.	4.2	4

Ηακ-Μαν Κιμ

#	Article	IF	CITATIONS
73	Direct Phase Angle and Voltage Amplitude Model Predictive Control of a Power Converter for Microgrid Applications. Energies, 2018, 11, 2254.	3.1	3
74	Multiagent-Based Distributed Coordination of Inverter-Based Resources for Optimal Operation of Microgrids Considering Communication Failures. Energies, 2022, 15, 3736.	3.1	3
75	Optimal microgrid operation considering auto-configuration in islanded mode. , 2016, , .		2
76	Diffusion Strategy-Based Distributed Optimization for Operation of Multi-Microgrid System. , 2018, , .		2
77	Diffusion-Based Distributed Coordination Control of Power Converters in MG for Efficiency Improvement. IEEE Access, 2019, 7, 53347-53357.	4.2	2
78	Hybrid Energy Management System for Operation of Wind Farm System Considering Grid-Code Constraints. Energies, 2019, 12, 4672.	3.1	2
79	Distributed Operation of Microgrids Considering Secondary Frequency Restoration Based on the Diffusion Algorithm. Energies, 2020, 13, 3207.	3.1	2
80	Demand Response for Enhancing Survivability of Microgrids During Islanded Operation. , 2018, , .		1
81	Real-time optimization for microgrid operation based on auto-configuration in grid-connected mode. , 2016, , .		0