David A Theilmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4746290/publications.pdf

Version: 2024-02-01

75 papers 2,781 citations

30 h-index 189801 50 g-index

75 all docs

75 docs citations

75 times ranked 1516 citing authors

#	Article	IF	CITATIONS
1	Analysis of the Insect OS-D-Like Gene Family. Journal of Chemical Ecology, 2004, 30, 889-911.	0.9	160
2	Molecular analysis of the trans-activating IE-2 gene of Orgyia pseudotsugata multicapsid nuclear polyhedrosis virus. Virology, 1992, 187, 84-96.	1.1	116
3	4-Coumarate:Coenzyme A Ligase in Hybrid Poplar1. Plant Physiology, 1998, 116, 743-754.	2.3	116
4	Baculovirus Entry and Egress from Insect Cells. Annual Review of Virology, 2018, 5, 113-139.	3.0	116
5	Sequence and Organization of the Mamestra configurata Nucleopolyhedrovirus Genome. Virology, 2002, 294, 106-121.	1.1	105
6	ICTV Virus Taxonomy Profile: Baculoviridae. Journal of General Virology, 2018, 99, 1185-1186.	1.3	101
7	Tandemly repeated sequence at the $3\hat{a} \in \mathbb{R}^2$ end of the IE-2 gene of the baculovirus Orgyia pseudotsugata multicapsid nuclear polyhedrosis virus is an enhancer element. Virology, 1992, 187, 97-106.	1.1	97
8	Identification and Genomic Analysis of a Second Species of Nucleopolyhedrovirus Isolated from Mamestra configurata. Virology, 2002, 297, 226-244.	1.1	94
9	Baculovirus immediate-early promoter-mediated expression of the Zeocinâ,,¢ resistance gene for use as a dominant selectable marker in Dipteran and Lepidopteran insect cell lines. Gene, 1997, 188, 183-190.	1.0	93
10	<i>Autographa californica</i> Multiple Nucleopolyhedrovirus Core Gene <i>ac96</i> Encodes a Per Os Infectivity Factor (<i>pif-4</i>). Journal of Virology, 2009, 83, 12569-12578.	1.5	86
11	Autographa californica Multiple Nucleopolyhedrovirus AC83 is a <i>Per Os</i> Infectivity Factor (PIF) Protein Required for Occlusion-Derived Virus (ODV) and Budded Virus Nucleocapsid Assembly as well as Assembly of the PIF Complex in ODV Envelopes. Journal of Virology, 2017, 91, .	1.5	80
12	Characterization of Novel Components of the Baculovirus <i>Per Os</i> Infectivity Factor Complex. Journal of Virology, 2012, 86, 4981-4988.	1.5	78
13	Sequence analysis of the complete genome of Trichoplusia ni single nucleopolyhedrovirus and the identification of a baculoviral photolyase gene. Virology, 2005, 338, 209-226.	1.1	71
14	Segment W of Campoletis sonorensis virus: Expression, gene products, and organization. Virology, 1989, 169, 78-89.	1.1	65
15	<i>Autographa californica</i> Multiple Nucleopolyhedrovirus EXONO (ORF141) Is Required for Efficient Egress of Nucleocapsids from the Nucleus. Journal of Virology, 2007, 81, 9859-9869.	1.5	64
16	AcMNPV ac143 (odv-e18) is essential for mediating budded virus production and is the 30th baculovirus core gene. Virology, 2008, 375, 277-291.	1.1	62
17	Autographa californica multiple nucleopolyhedrovirus ac142, a core gene that is essential for BV production and ODV envelopment. Virology, 2008, 372, 325-339.	1.1	61
18	The Autographa californica Multiple Nucleopolyhedrovirus ieO - ie1 Gene Complex Is Essential for Wild-Type Virus Replication, but either IEO or IE1 Can Support Virus Growth. Journal of Virology, 2005, 79, 4619-4629.	1.5	60

#	Article	IF	CITATIONS
19	A series of broad host range shuttle vectors for constitutive and inducible expression of heterologous proteins in insect cell lines. Gene, 1998, 207, 241-249.	1.0	58
20	Physical Analysis of the Campoletis sonorensis Virus Multipartite Genome and Identification of a Family of Tandemly Repeated Elements. Journal of Virology, 1987, 61, 2589-2598.	1.5	58
21	Autographa californica Multiple Nucleopolyhedrovirus exon0 (orf141), Which Encodes a RING Finger Protein, Is Required for Efficient Production of Budded Virus. Journal of Virology, 2004, 78, 9633-9644.	1.5	56
22	Nucleopolyhedroviruses of forest and western tent caterpillars: cross-infectivity and evidence for activation of latent virus in high-density field populations. Ecological Entomology, 2003, 28, 41-50.	1,1	55
23	Complete comparative genomic analysis of two field isolates of Mamestra configurata nucleopolyhedrovirus-A. Journal of General Virology, 2005, 86, 91-105.	1.3	51
24	Analysis of the Autographa californica Multiple Nucleopolyhedrovirus Overlapping Gene Pair <i>lef3</i> and <i>ac68</i> Reveals that AC68 Is a <i>Per Os</i> Infectivity Factor and that LEF3 Is Critical, but Not Essential, for Virus Replication. Journal of Virology, 2012, 86, 3985-3994.	1.5	48
25	Characterization of a Highly Conserved Baculovirus Structural Protein That Is Specific for Occlusion-Derived Virions. Virology, 1996, 218, 148-158.	1.1	45
26	Deletion of pe38 attenuates AcMNPV genome replication, budded virus production, and virulence in heliothis virescens. Virology, 2003, 310, 224-234.	1.1	42
27	Role of enhancin in Mamestra configurata nucleopolyhedrovirus virulence: selective degradation of host peritrophic matrix proteins. Journal of General Virology, 2012, 93, 744-753.	1.3	39
28	Characterization of baculovirus isolates from Trichoplusia ni populations from vegetable greenhouses. Biological Control, 2007, 41, 256-263.	1.4	38
29	Characterization of Mamestra configurata nucleopolyhedrovirus enhancin and its functional analysis via expression in an Autographa californica M nucleopolyhedrovirus recombinant. Journal of General Virology, 2003, 84, 123-132.	1.3	37
30	AcMNPV EXONO (AC141) which is required for the efficient egress of budded virus nucleocapsids interacts with \hat{l}^2 -tubulin. Virology, 2009, 385, 496-504.	1.1	33
31	AcMNPV AC16 (DA26, BV/ODV-E26) regulates the levels of IEO and IE1 and binds to both proteins via a domain located within the acidic transcriptional activation domain. Virology, 2009, 385, 484-495.	1.1	26
32	Proteomics analysis of <i>Trichoplusia ni</i> midgut epithelial cell brush border membrane vesicles. Insect Science, 2019, 26, 424-440.	1.5	26
33	The Acidic Activation Domain of the Baculovirus Transactivator IE1 Contains a Virus-Specific Domain Essential for DNA Replication. Journal of Virology, 2002, 76, 5598-5604.	1.5	23
34	Horizontally transmitted parasitoid killing factor shapes insect defense to parasitoids. Science, 2021, 373, 535-541.	6.0	23
35	The Baculovirus Transcriptional Transactivator ieO Produces Multiple Products by Internal Initiation of Translation. Virology, 2001, 290, 211-223.	1.1	22
36	The acidic activation domains of the baculovirus transactivators IE1 and IEO are functional for transcriptional activation in both insect and mammalian cells. Journal of General Virology, 2004, 85, 573-582.	1.3	22

3

#	Article	IF	CITATIONS
37	<i>Autographa californica</i> Multiple Nucleopolyhedrovirus <i>me53</i> (<i>ac140</i>) Is a Nonessential Gene Required for Efficient Budded-Virus Production. Journal of Virology, 2009, 83, 7440-7448.	1.5	22
38	Deletion of the AcMNPV core gene ac109 results in budded virions that are non-infectious. Virology, 2009, 389, 66-74.	1.1	22
39	Identification and comparison of Campoletis sonorensis virus transcripts expressed from four genomic segments in the insect hosts Campoletis sonorensis and Heliothis virescens. Virology, 1988, 167, 329-341.	1.1	21
40	Role of AcMNPV IEO in baculovirus very late gene activation. Virology, 2004, 323, 120-130.	1.1	21
41	Autographa californica multiple nucleopolyhedrovirus core gene ac92 (p33) is required for efficient budded virus production. Virology, 2011, 409, 38-45.	1.1	21
42	A novel mechanism for nuclear import by actin-based propulsion used by the baculovirus nucleocapsid. Journal of Cell Science, 2016, 129, 2905-11.	1.2	21
43	Baculoviruses require an intact ODV entry-complex to resist proteolytic degradation of per os infectivity factors by co-occluded proteases from the larval host. Journal of General Virology, 2017, 98, 3101-3110.	1.3	21
44	Characterization of the Acidic Domain of the IE1 Regulatory Protein fromOrgyia pseudotsugataMulticapsid Nucleopolyhedrovirus. Virology, 1998, 252, 65-81.	1.1	19
45	Differences in the Expression and Localization of Human Melanotransferrin in Lepidopteran and Dipteran Insect Cell Lines. Protein Expression and Purification, 1999, 15, 296-307.	0.6	19
46	ICTV Virus Taxonomy Profile: Nudiviridae. Journal of General Virology, 2020, 101, 3-4.	1.3	19
47	Expression of poplar phenylalanine ammonia-lyase in insect cell cultures. Phytochemistry, 1996, 41, 1259-1263.	1.4	18
48	Deletion of AcMNPV AC16 and AC17 results in delayed viral gene expression in budded virus infected cells but not transfected cells. Virology, 2010, 404, 168-179.	1.1	18
49	The genome of a baculovirus isolated from Hemileuca sp. encodes a serpin ortholog. Virus Genes, 2013, 47, 357-364.	0.7	17
50	The Complete Genome Sequence of a Second Distinct Betabaculovirus from the True Armyworm, Mythimna unipuncta. PLoS ONE, 2017, 12, e0170510.	1.1	16
51	Immediate-Early Protein ME53 Forms Foci and Colocalizes with GP64 and the Major Capsid Protein VP39 at the Cell Membranes of Autographa californica Multiple Nucleopolyhedrovirus-Infected Cells. Journal of Virology, 2011, 85, 9696-9707.	1.5	15
52	Deletion of AcMNPV ac146 eliminates the production of budded virus. Virology, 2012, 431, 29-39.	1.1	15
53	Trichoplusia ni Kinesin-1 Associates with Autographa californica Multiple Nucleopolyhedrovirus Nucleocapsid Proteins and Is Required for Production of Budded Virus. Journal of Virology, 2016, 90, 3480-3495.	1.5	14
54	Autographa californica Nucleopolyhedrovirus AC141 (Exon0), a Potential E3 Ubiquitin Ligase, Interacts with Viral Ubiquitin and AC66 To Facilitate Nucleocapsid Egress. Journal of Virology, 2018, 92, .	1.5	14

#	Article	IF	CITATIONS
55	The complete genome sequence of a third distinct baculovirus isolated from the true armyworm, Mythimna unipuncta, contains two copies of the lef-7 gene. Virus Genes, 2018, 54, 297-310.	0.7	14
56	Recombinant and Wild-Type Nucleopolyhedroviruses are Equally Fit in Mixed Infections. Environmental Entomology, 2001, 30, 972-981.	0.7	12
57	Identification of AcMNPV EXONO (ac141) domains required for efficient production of budded virus, dimerization and association with BV/ODV-C42 and FP25. Virology, 2008, 375, 265-276.	1.1	12
58	Analysis of sequences involved in IE2 transactivation of a baculovirus immediate–early gene promoter and identification of a new regulatory motif. Virus Research, 2001, 75, 13-28.	1.1	11
59	Characterization of a Unique OpMNPV-Specific Early Gene Not Required for Viral Infection in Tissue Culture. Virology, 1997, 227, 447-459.	1.1	10
60	Tight transcriptional regulation of foreign genes in insect cells using an ecdysone receptor-based inducible system. Protein Expression and Purification, 2005, 42, 236-245.	0.6	8
61	Defining the roles of the baculovirus regulatory proteins IEO and IE1 in genome replication and early gene transactivation. Virology, 2014, 468-470, 160-171.	1.1	7
62	Mamestra configurata nucleopolyhedrovirus-A transcriptome from infected host midgut. Virus Genes, 2014, 48, 174-183.	0.7	6
63	Microscopic investigation of AcMNPV infection in the Trichoplusia ni midgut. Journal of Invertebrate Pathology, 2016, 141, 24-33.	1.5	6
64	Serial Selection for Resistance to a Wild-Type and to a Genetically Modified Nucleopolyhedrovirus in Trichoplusia ni. Biological Control, 2000, 19, 283-289.	1.4	5
65	Nuclear Translocation Sequence and Region in Autographa californica Multiple Nucleopolyhedrovirus ME53 That Are Important for Optimal Baculovirus Production. Journal of Virology, 2016, 90, 3953-3965.	1.5	5
66	Analysis of the temporal expression of Trichoplusia ni single nucleopolyhedrovirus genes following transfection of BT1-Tn-5B1-4 cells. Virology, 2006, 354, 154-166.	1.1	4
67	Genome Sequence of an Alphabaculovirus Isolated from Choristoneura murinana. Genome Announcements, 2014, 2, .	0.8	4
68	Genome Sequence of an Alphabaculovirus Isolated from the Oak Looper, Lambdina fiscellaria, Contains a Putative 2-Kilobase-Pair Transposable Element Encoding a Transposase and a FLYWCH Domain-Containing Protein. Genome Announcements, 2015, 3, .	0.8	4
69	Lacanobia oleracea nucleopolyhedrovirus (LaolNPV): A new European species of alphabaculovirus with a narrow host range. PLoS ONE, 2017, 12, e0176171.	1.1	4
70	The complete genome sequence of a second alphabaculovirus from the true armyworm, Mythimna unipuncta: implications for baculovirus phylogeny and host specificity. Virus Genes, 2019, 55, 104-116.	0.7	3
71	A Distinct Group II Alphabaculovirus Isolated from a Peridroma Species. Genome Announcements, 2015, 3, .	0.8	2
72	MacoNPV baculovirus midgut-specific gene expression during infection of the bertha armyworm, Mamestra configurata. Virology, 2016, 499, 1-8.	1.1	2

#	Article	IF	CITATIONS
73	Identification of a Granulosis Virus Associated with Mortality in the Blackheaded Fireworm, Rhopobota naevana ($H\tilde{A}^{1/4}$ bner) (Lepidoptera, Tortricidae). Journal of Invertebrate Pathology, 1995, 66, 209-211.	1.5	1
74	The C-termini of the baculovirus per os infectivity factors 1 and 2 mediate ODV oral infectivity by facilitating the binding of PIFO and PIF8 to the core of the entry complex. Journal of General Virology, 2020, 101, 553-564.	1.3	1
75	Corrigendum to "Sequence analysis of the complete genome of Trichoplusia ni single nucleopolyhedrovirus and the identification of a baculoviral photolyase gene―[Virology 338 (2005) 209–226]. Virology, 2006, 344, 560.	1.1	O