Jay D Keasling

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4746243/publications.pdf Version: 2024-02-01

		1094	2027
514	53,284	112	205
papers	citations	h-index	g-index
555	555	555	31029
all docs	docs citations	times ranked	citing authors

INV D KEASLING

#	Article	IF	CITATIONS
1	Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature, 2006, 440, 940-943.	13.7	2,498
2	High-level semi-synthetic production of the potent antimalarial artemisinin. Nature, 2013, 496, 528-532.	13.7	1,668
3	Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nature Biotechnology, 2003, 21, 796-802.	9.4	1,539
4	Microbial production of fatty-acid-derived fuels and chemicals from plant biomass. Nature, 2010, 463, 559-562.	13.7	1,192
5	Synthetic protein scaffolds provide modular control over metabolic flux. Nature Biotechnology, 2009, 27, 753-759.	9.4	1,071
6	Engineering Cellular Metabolism. Cell, 2016, 164, 1185-1197.	13.5	953
7	Microbial engineering for the production of advanced biofuels. Nature, 2012, 488, 320-328.	13.7	951
8	Manufacturing Molecules Through Metabolic Engineering. Science, 2010, 330, 1355-1358.	6.0	725
9	Design of a dynamic sensor-regulator system for production of chemicals and fuels derived from fatty acids. Nature Biotechnology, 2012, 30, 354-359.	9.4	721
10	Precise and reliable gene expression via standard transcription and translation initiation elements. Nature Methods, 2013, 10, 354-360.	9.0	653
11	Production of amorphadiene in yeast, and its conversion to dihydroartemisinic acid, precursor to the antimalarial agent artemisinin. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E111-8.	3.3	616
12	Semi-synthetic artemisinin: a model for the use of synthetic biology in pharmaceutical development. Nature Reviews Microbiology, 2014, 12, 355-367.	13.6	556
13	Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels. Current Opinion in Biotechnology, 2008, 19, 556-563.	3.3	535
14	Identification and microbial production of a terpene-based advanced biofuel. Nature Communications, 2011, 2, 483.	5.8	516
15	Combinatorial engineering of intergenic regions in operons tunes expression of multiple genes. Nature Biotechnology, 2006, 24, 1027-1032.	9.4	492
16	Complete biosynthesis of cannabinoids and their unnatural analogues in yeast. Nature, 2019, 567, 123-126.	13.7	473
17	Engineering microbial biofuel tolerance and export using efflux pumps. Molecular Systems Biology, 2011, 7, 487.	3.2	440
18	Biosynthesis of Plant Isoprenoids: Perspectives for Microbial Engineering. Annual Review of Plant Biology, 2009, 60, 335-355.	8.6	428

#	Article	IF	CITATIONS
19	Metabolic engineering of Saccharomyces cerevisiae for the production of n-butanol. Microbial Cell Factories, 2008, 7, 36.	1.9	417
20	Designed divergent evolution of enzyme function. Nature, 2006, 440, 1078-1082.	13.7	414
21	Engineering dynamic pathway regulation using stress-response promoters. Nature Biotechnology, 2013, 31, 1039-1046.	9.4	411
22	BglBrick vectors and datasheets: A synthetic biology platform for gene expression. Journal of Biological Engineering, 2011, 5, 12.	2.0	391
23	Balancing a heterologous mevalonate pathway for improved isoprenoid production in Escherichia coli. Metabolic Engineering, 2007, 9, 193-207.	3.6	388
24	Synthetic Biology for Synthetic Chemistry. ACS Chemical Biology, 2008, 3, 64-76.	1.6	383
25	Retrograde Signaling by the Plastidial Metabolite MEcPP Regulates Expression of Nuclear Stress-Response Genes. Cell, 2012, 149, 1525-1535.	13.5	368
26	Synthetic biology and the development of tools for metabolic engineering. Metabolic Engineering, 2012, 14, 189-195.	3.6	363
27	Production of isoprenoid pharmaceuticals by engineered microbes. Nature Chemical Biology, 2006, 2, 674-681.	3.9	361
28	Multiplex metabolic pathway engineering using CRISPR/Cas9 in Saccharomyces cerevisiae. Metabolic Engineering, 2015, 28, 213-222.	3.6	355
29	BglBricks: A flexible standard for biological part assembly. Journal of Biological Engineering, 2010, 4, 1.	2.0	348
30	Metabolic engineering of Escherichia coli for limonene and perillyl alcohol production. Metabolic Engineering, 2013, 19, 33-41.	3.6	343
31	Biofuel alternatives to ethanol: pumping the microbial well. Trends in Biotechnology, 2008, 26, 375-381.	4.9	338
32	Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid-derived biofuels and chemicals. Metabolic Engineering, 2014, 21, 103-113.	3.6	338
33	Engineering Escherichia coli for production of functionalized terpenoids using plant P450s. Nature Chemical Biology, 2007, 3, 274-277.	3.9	334
34	Synthesis of three advanced biofuels from ionic liquid-pretreated switchgrass using engineered <i>Escherichia coli</i> . Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 19949-19954.	3.3	333
35	Advanced biofuel production in microbes. Biotechnology Journal, 2010, 5, 147-162.	1.8	331
36	High-Level Production of Amorpha-4,11-Diene, a Precursor of the Antimalarial Agent Artemisinin, in Escherichia coli. PLoS ONE, 2009, 4, e4489.	1.1	318

#	Article	IF	CITATIONS
37	Metabolic engineering of microbial pathways for advanced biofuels production. Current Opinion in Biotechnology, 2011, 22, 775-783.	3.3	313
38	Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae for high-level production of isoprenoids. Metabolic Engineering, 2007, 9, 160-168.	3.6	302
39	High-Throughput Metabolic Engineering: Advances in Small-Molecule Screening and Selection. Annual Review of Biochemistry, 2010, 79, 563-590.	5.0	290
40	Computational protein design enables a novel one-carbon assimilation pathway. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 3704-3709.	3.3	286
41	Stoichiometric model ofEscherichia coli metabolism: Incorporation of growth-rate dependent biomass composition and mechanistic energy requirements. , 1997, 56, 398-421.		284
42	Metabolic engineering of the nonmevalonate isopentenyl diphosphate synthesis pathway inEscherichia coli enhances lycopene production. Biotechnology and Bioengineering, 2001, 72, 408-415.	1.7	283
43	j5 DNA Assembly Design Automation Software. ACS Synthetic Biology, 2012, 1, 14-21.	1.9	283
44	Homogeneous expression of the PBAD promoter in Escherichia coli by constitutive expression of the low-affinity high-capacity AraE transporter. Microbiology (United Kingdom), 2001, 147, 3241-3247.	0.7	262
45	Optimization of the mevalonate-based isoprenoid biosynthetic pathway in Escherichia coli for production of the anti-malarial drug precursor amorpha-4,11-diene. Metabolic Engineering, 2009, 11, 13-19.	3.6	259
46	Modular Engineering of <scp>l</scp> -Tyrosine Production in Escherichia coli. Applied and Environmental Microbiology, 2012, 78, 89-98.	1.4	240
47	High-level production of amorpha-4,11-diene in a two-phase partitioning bioreactor of metabolically engineeredEscherichia coli. Biotechnology and Bioengineering, 2006, 95, 684-691.	1.7	239
48	Low-Copy Plasmids can Perform as Well as or Better Than High-Copy Plasmids for Metabolic Engineering of Bacteria. Metabolic Engineering, 2000, 2, 328-338.	3.6	237
49	Developing Aspergillus as a host for heterologous expression. Biotechnology Advances, 2009, 27, 53-75.	6.0	235
50	Biosynthesis and engineering of isoprenoid small molecules. Applied Microbiology and Biotechnology, 2007, 73, 980-990.	1.7	234
51	A Cas9-based toolkit to program gene expression in <i>Saccharomyces cerevisiae</i> . Nucleic Acids Research, 2017, 45, 496-508.	6.5	215
52	Engineering Static and Dynamic Control of Synthetic Pathways. Cell, 2010, 140, 19-23.	13.5	213
53	Integrating Biological Redesign: Where Synthetic Biology Came From and Where It Needs to Go. Cell, 2014, 157, 151-161.	13.5	211
54	Microbial Synthesis of Pinene. ACS Synthetic Biology, 2014, 3, 466-475.	1.9	210

#	Article	IF	CITATIONS
55	Functional Genomic Study of Exogenous <i>n</i> -Butanol Stress in <i>Escherichia coli</i> . Applied and Environmental Microbiology, 2010, 76, 1935-1945.	1.4	209
56	EasyCloneâ€MarkerFree: A vector toolkit for markerâ€less integration of genes into <i>Saccharomyces cerevisiae</i> via CRISPRâ€Cas9. Biotechnology Journal, 2016, 11, 1110-1117.	1.8	206
57	XAX1 from glycosyltransferase family 61 mediates xylosyltransfer to rice xylan. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 17117-17122.	3.3	198
58	Process design for microbial plastic factories: metabolic engineering of polyhydroxyalkanoates. Current Opinion in Biotechnology, 2003, 14, 475-483.	3.3	197
59	Combinatorial expression of bacterial whole mevalonate pathway for the production of β-carotene in E. coli. Journal of Biotechnology, 2009, 140, 218-226.	1.9	194
60	Genomic Encyclopedia of Bacteria and Archaea: Sequencing a Myriad of Type Strains. PLoS Biology, 2014, 12, e1001920.	2.6	190
61	Metabolic engineering for drug discovery and development. Nature Reviews Drug Discovery, 2003, 2, 1019-1025.	21.5	187
62	Synthetic and systems biology for microbial production of commodity chemicals. Npj Systems Biology and Applications, 2016, 2, 16009.	1.4	187
63	A Novel Semi-biosynthetic Route for Artemisinin Production Using Engineered Substrate-Promiscuous P450 _{BM3} . ACS Chemical Biology, 2009, 4, 261-267.	1.6	184
64	Biosensors and their applications in microbial metabolic engineering. Trends in Microbiology, 2011, 19, 323-329.	3.5	184
65	Lutein Accumulation in the Absence of Zeaxanthin Restores Nonphotochemical Quenching in the <i>Arabidopsis thaliana npq1</i> Mutant Â. Plant Cell, 2009, 21, 1798-1812.	3.1	183
66	Quantitative estimation of activity and quality for collections of functional genetic elements. Nature Methods, 2013, 10, 347-353.	9.0	183
67	Engineering prokaryotic transcriptional activators as metabolite biosensors in yeast. Nature Chemical Biology, 2016, 12, 951-958.	3.9	182
68	Model-Driven Engineering of RNA Devices to Quantitatively Program Gene Expression. Science, 2011, 334, 1716-1719.	6.0	180
69	CRISPR/Cas9 advances engineering of microbial cell factories. Metabolic Engineering, 2016, 34, 44-59.	3.6	179
70	De novo DNA synthesis using polymerase-nucleotide conjugates. Nature Biotechnology, 2018, 36, 645-650.	9.4	177
71	Transcription Factor-Based Screens and Synthetic Selections for Microbial Small-Molecule Biosynthesis. ACS Synthetic Biology, 2013, 2, 47-58.	1.9	176
72	Identification of Isopentenol Biosynthetic Genes from <i>Bacillus subtilis</i> by a Screening Method Based on Isoprenoid Precursor Toxicity. Applied and Environmental Microbiology, 2007, 73, 6277-6283.	1.4	174

#	Article	IF	CITATIONS
73	Enhancing fatty acid production by the expression of the regulatory transcription factor FadR. Metabolic Engineering, 2012, 14, 653-660.	3.6	173
74	Design, implementation and practice of JBEI-ICE: an open source biological part registry platform and tools. Nucleic Acids Research, 2012, 40, e141-e141.	6.5	172
75	Application of Functional Genomics to Pathway Optimization for Increased Isoprenoid Production. Applied and Environmental Microbiology, 2008, 74, 3229-3241.	1.4	171
76	Targeted proteomics for metabolic pathway optimization: Application to terpene production. Metabolic Engineering, 2011, 13, 194-203.	3.6	169
77	Charge-Associated Effects of Fullerene Derivatives on Microbial Structural Integrity and Central Metabolism. Nano Letters, 2007, 7, 754-760.	4.5	167
78	Viscous control of cellular respiration by membrane lipid composition. Science, 2018, 362, 1186-1189.	6.0	167
79	Building a global alliance of biofoundries. Nature Communications, 2019, 10, 2040.	5.8	167
80	Regulatable Arabinose-Inducible Gene Expression System with Consistent Control in All Cells of a Culture. Journal of Bacteriology, 2000, 182, 7029-7034.	1.0	164
81	Induction of multiple pleiotropic drug resistance genes in yeast engineered to produce an increased level of anti-malarial drug precursor, artemisinic acid. BMC Biotechnology, 2008, 8, 83.	1.7	164
82	Overexpression of a BAHD Acyltransferase, <i>OsAt10</i> , Alters Rice Cell Wall Hydroxycinnamic Acid Content and Saccharification Â. Plant Physiology, 2013, 161, 1615-1633.	2.3	164
83	Mathematical Model of the lac Operon: Inducer Exclusion, Catabolite Repression, and Diauxic Growth on Glucose and Lactose. Biotechnology Progress, 1997, 13, 132-143.	1.3	159
84	Carotenoid-based phenotypic screen of the yeast deletion collection reveals new genes with roles in isoprenoid production. Metabolic Engineering, 2013, 15, 174-183.	3.6	157
85	Biofuels for a sustainable future. Cell, 2021, 184, 1636-1647.	13.5	156
86	Salt Stress in Desulfovibrio vulgaris Hildenborough: an Integrated Genomics Approach. Journal of Bacteriology, 2006, 188, 4068-4078.	1.0	155
87	Programming adaptive control to evolve increased metabolite production. Nature Communications, 2013, 4, 2595.	5.8	153
88	Industrial brewing yeast engineered for the production of primary flavor determinants in hopped beer. Nature Communications, 2018, 9, 965.	5.8	152
89	Rhodosporidium toruloides: a new platform organism for conversion of lignocellulose into terpene biofuels and bioproducts. Biotechnology for Biofuels, 2017, 10, 241.	6.2	150
90	Development of biosensors and their application in metabolic engineering. Current Opinion in Chemical Biology, 2015, 28, 1-8.	2.8	149

#	Article	IF	CITATIONS
91	CasEMBLR: Cas9-Facilitated Multiloci Genomic Integration of <i>in Vivo</i> Assembled DNA Parts in <i>Saccharomyces cerevisiae</i> . ACS Synthetic Biology, 2015, 4, 1226-1234.	1.9	148
92	Engineering synergy in biotechnology. Nature Chemical Biology, 2014, 10, 319-322.	3.9	147
93	Enhanced lycopene production inEscherichia coli engineered to synthesize isopentenyl diphosphate and dimethylallyl diphosphate from mevalonate. Biotechnology and Bioengineering, 2006, 94, 1025-1032.	1.7	144
94	Metabolic engineering delivers next-generation biofuels. Nature Biotechnology, 2008, 26, 298-299.	9.4	144
95	Mono and diterpene production inEscherichia coli. Biotechnology and Bioengineering, 2004, 87, 200-212.	1.7	141
96	Optimization of a heterologous mevalonate pathway through the use of variant HMC-CoA reductases. Metabolic Engineering, 2011, 13, 588-597.	3.6	141
97	Biosynthesis and incorporation of sideâ€chainâ€truncated lignin monomers to reduce lignin polymerization and enhance saccharification. Plant Biotechnology Journal, 2012, 10, 609-620.	4.1	140
98	Principal component analysis of proteomics (PCAP) as a tool to direct metabolic engineering. Metabolic Engineering, 2015, 28, 123-133.	3.6	140
99	Impact of ionic liquid pretreated plant biomass on Saccharomyces cerevisiae growth and biofuel production. Green Chemistry, 2011, 13, 2743.	4.6	139
100	Genes Involved in Long-Chain Alkene Biosynthesis in <i>Micrococcus luteus</i> . Applied and Environmental Microbiology, 2010, 76, 1212-1223.	1.4	138
101	Advances in analysis of microbial metabolic fluxes via ¹³ C isotopic labeling. Mass Spectrometry Reviews, 2009, 28, 362-375.	2.8	137
102	Combining mechanistic and machine learning models for predictive engineering and optimization of tryptophan metabolism. Nature Communications, 2020, 11, 4880.	5.8	137
103	Redirection of flux through the FPP branchâ€point in <i>Saccharomyces cerevisiae</i> by downâ€regulating squalene synthase. Biotechnology and Bioengineering, 2008, 100, 371-378.	1.7	134
104	The effect of ionic liquid cation and anion combinations on the macromolecular structure of lignins. Green Chemistry, 2011, 13, 3375.	4.6	134
105	CrEdit: CRISPR mediated multi-loci gene integration in Saccharomyces cerevisiae. Microbial Cell Factories, 2015, 14, 97.	1.9	134
106	Engineering of Bacterial Methyl Ketone Synthesis for Biofuels. Applied and Environmental Microbiology, 2012, 78, 70-80.	1.4	130
107	Synergies between synthetic biology and metabolic engineering. Nature Biotechnology, 2011, 29, 693-695.	9.4	128
108	Three Members of the Arabidopsis Glycosyltransferase Family 8 Are Xylan Glucuronosyltransferases Â. Plant Physiology, 2012, 159, 1408-1417.	2.3	128

#	Article	IF	CITATIONS
109	A model for improving microbial biofuel production using a synthetic feedback loop. Systems and Synthetic Biology, 2010, 4, 95-104.	1.0	127
110	Microbial production of advanced biofuels. Nature Reviews Microbiology, 2021, 19, 701-715.	13.6	126
111	Metabolic engineering for the high-yield production of isoprenoid-based C5 alcohols in E. coli. Scientific Reports, 2015, 5, 11128.	1.6	125
112	Design and Construction of a Double Inversion Recombination Switch for Heritable Sequential Genetic Memory. PLoS ONE, 2008, 3, e2815.	1.1	123
113	Polyphosphate Kinase from Activated Sludge Performing Enhanced Biological Phosphorus Removal. Applied and Environmental Microbiology, 2002, 68, 4971-4978.	1.4	121
114	Remodeling the isoprenoid pathway in tobacco by expressing the cytoplasmic mevalonate pathway in chloroplasts. Metabolic Engineering, 2012, 14, 19-28.	3.6	120
115	Importance of systems biology in engineering microbes for biofuel production. Current Opinion in Biotechnology, 2008, 19, 228-234.	3.3	119
116	Memory in Microbes: Quantifying History-Dependent Behavior in a Bacterium. PLoS ONE, 2008, 3, e1700.	1.1	115
117	Base-Catalyzed Depolymerization of Solid Lignin-Rich Streams Enables Microbial Conversion. ACS Sustainable Chemistry and Engineering, 2017, 5, 8171-8180.	3.2	115
118	Engineering triterpene production in <i>Saccharomyces cerevisiae</i> –βâ€amyrin synthase from <i>Artemisia annua</i> . FEBS Journal, 2008, 275, 1852-1859.	2.2	114
119	Improving Microbial Biogasoline Production in Escherichia coli Using Tolerance Engineering. MBio, 2014, 5, e01932.	1.8	113
120	Isoprenoid Drugs, Biofuels, and Chemicals—Artemisinin, Farnesene, and Beyond. Advances in Biochemical Engineering/Biotechnology, 2015, 148, 355-389.	0.6	113
121	Gene-expression tools for the metabolic engineering of bacteria. Trends in Biotechnology, 1999, 17, 452-460.	4.9	109
122	Rapid metabolic pathway assembly and modification using serine integrase site-specific recombination. Nucleic Acids Research, 2014, 42, e23-e23.	6.5	109
123	Uranyl Precipitation by Pseudomonas aeruginosa via Controlled Polyphosphate Metabolism. Applied and Environmental Microbiology, 2004, 70, 7404-7412.	1.4	106
124	Identification of the Intermediates of in Vivo Oxidation of 1,4-Dioxane by Monooxygenase-Containing Bacteria. Environmental Science & Technology, 2007, 41, 7330-7336.	4.6	106
125	Integrated analysis of isopentenyl pyrophosphate (IPP) toxicity in isoprenoid-producing Escherichia coli. Metabolic Engineering, 2018, 47, 60-72.	3.6	106
126	Microbially Derived Artemisinin: A Biotechnology Solution to the Global Problem of Access to Affordable Antimalarial Drugs. American Journal of Tropical Medicine and Hygiene, 2007, 77, 198-202.	0.6	105

#	Article	IF	CITATIONS
127	Microbioreactor arrays with parametric control for high-throughput experimentation. Biotechnology and Bioengineering, 2004, 85, 376-381.	1.7	104
128	Metabolic flux elucidation for large-scale models using 13C labeled isotopes. Metabolic Engineering, 2007, 9, 387-405.	3.6	104
129	Transcriptional reprogramming in yeast using dCas9 and combinatorial gRNA strategies. Microbial Cell Factories, 2017, 16, 46.	1.9	102
130	Farnesol production from <i>Escherichia coli</i> by harnessing the exogenous mevalonate pathway. Biotechnology and Bioengineering, 2010, 107, 421-429.	1.7	101
131	Evolved hexose transporter enhances xylose uptake and glucose/xylose co-utilization in Saccharomyces cerevisiae. Scientific Reports, 2016, 6, 19512.	1.6	100
132	Comprehensive <i>in Vitro</i> Analysis of Acyltransferase Domain Exchanges in Modular Polyketide Synthases and Its Application for Short-Chain Ketone Production. ACS Synthetic Biology, 2017, 6, 139-147.	1.9	100
133	Engineering of synthetic, stress-responsive yeast promoters. Nucleic Acids Research, 2016, 44, e136-e136.	6.5	99
134	Engineering the lycopene synthetic pathway in E. coli by comparison of the carotenoid genes of Pantoea agglomerans and Pantoea ananatis. Applied Microbiology and Biotechnology, 2007, 74, 131-139.	1.7	98
135	A Thermophilic Ionic Liquid-Tolerant Cellulase Cocktail for the Production of Cellulosic Biofuels. PLoS ONE, 2012, 7, e37010.	1.1	98
136	Library of Synthetic 5' Secondary Structures To Manipulate mRNA Stability in Escherichia coli. Biotechnology Progress, 1999, 15, 58-64.	1.3	97
137	Directed Evolution of AraC for Improved Compatibility of Arabinose- and Lactose-Inducible Promoters. Applied and Environmental Microbiology, 2007, 73, 5711-5715.	1.4	97
138	Isopentenyl diphosphate (IPP)-bypass mevalonate pathways for isopentenol production. Metabolic Engineering, 2016, 34, 25-35.	3.6	97
139	Engineering high-level production of fatty alcohols by Saccharomyces cerevisiae from lignocellulosic feedstocks. Metabolic Engineering, 2017, 42, 115-125.	3.6	97
140	The in vivo synthesis of plant sesquiterpenes byEscherichia coli. Biotechnology and Bioengineering, 2001, 75, 497-503.	1.7	96
141	Metabolic Engineering of a Novel Propionate-Independent Pathway for the Production of Poly(3-Hydroxybutyrate- co -3-Hydroxyvalerate) in Recombinant Salmonella enterica Serovar Typhimurium. Applied and Environmental Microbiology, 2002, 68, 3848-3854.	1.4	96
142	Membrane proteomics of phagosomes suggests a connection to autophagy. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 16952-16957.	3.3	96
143	Cell-Wide Responses to Low-Oxygen Exposure in Desulfovibrio vulgaris Hildenborough. Journal of Bacteriology, 2007, 189, 5996-6010.	1.0	94
144	Metabolic pathway optimization using ribosome binding site variants and combinatorial gene assembly. Applied Microbiology and Biotechnology, 2014, 98, 1567-1581.	1.7	94

#	Article	IF	CITATIONS
145	Nickel accumulation and nickel oxalate precipitation by Aspergillus niger. Applied Microbiology and Biotechnology, 2002, 59, 382-388.	1.7	92
146	Evolution-guided engineering of small-molecule biosensors. Nucleic Acids Research, 2020, 48, e3-e3.	6.5	92
147	Chemical synthesis using synthetic biology. Current Opinion in Biotechnology, 2009, 20, 498-503.	3.3	91
148	Cloning of casbene and neocembrene synthases from Euphorbiaceae plants and expression in Saccharomyces cerevisiae. Phytochemistry, 2010, 71, 1466-1473.	1.4	91
149	Pathway Confirmation and Flux Analysis of Central Metabolic Pathways in Desulfovibrio vulgaris Hildenborough using Gas Chromatography-Mass Spectrometry and Fourier Transform-Ion Cyclotron Resonance Mass Spectrometry. Journal of Bacteriology, 2007, 189, 940-949.	1.0	90
150	Separation and mass spectrometry in microbial metabolomics. Current Opinion in Microbiology, 2008, 11, 233-239.	2.3	90
151	Expression of a bacterial 3â€dehydroshikimate dehydratase reduces lignin content and improves biomass saccharification efficiency. Plant Biotechnology Journal, 2015, 13, 1241-1250.	4.1	90
152	Effect ofEscherichia coli biomass composition on central metabolic fluxes predicted by a stoichiometric model. , 1998, 60, 230-238.		89
153	Shewanella oneidensis MR-1 Fluxome under Various Oxygen Conditions. Applied and Environmental Microbiology, 2007, 73, 718-729.	1.4	89
154	Correlation analysis of targeted proteins and metabolites to assess and engineer microbial isopentenol production. Biotechnology and Bioengineering, 2014, 111, 1648-1658.	1.7	89
155	Regulation of Intracellular Toxic Metals and Other Cations by Hydrolysis of Polyphosphate. Annals of the New York Academy of Sciences, 1997, 829, 242-249.	1.8	87
156	Identification of genes affecting lycopene accumulation inEscherichia coli using a shot-gun method. Biotechnology and Bioengineering, 2005, 91, 636-642.	1.7	87
157	Arabidopsis <i>Deficient in Cutin Ferulate</i> Encodes a Transferase Required for Feruloylation of ï‰-Hydroxy Fatty Acids in Cutin Polyester Â. Plant Physiology, 2012, 158, 654-665.	2.3	86
158	A constructive debate. Nature, 2012, 492, 188-189.	13.7	86
159	DeviceEditor visual biological CAD canvas. Journal of Biological Engineering, 2012, 6, 1.	2.0	86
160	Commensal Interactions in a Dual-Species Biofilm Exposed to Mixed Organic Compounds. Applied and Environmental Microbiology, 2000, 66, 4481-4485.	1.4	85
161	An auto-inducible mechanism for ionic liquid resistance in microbial biofuel production. Nature Communications, 2014, 5, 3490.	5.8	85
162	Metabolic Engineering of an Aerobic Sulfate Reduction Pathway and Its Application to Precipitation of Cadmium on the Cell Surface. Applied and Environmental Microbiology, 2000, 66, 4497-4502.	1.4	84

#	Article	IF	CITATIONS
163	A kinetic model describingShewanella oneidensis MR-1 growth, substrate consumption, and product secretion. Biotechnology and Bioengineering, 2007, 96, 125-133.	1.7	84
164	Metabolic engineering of microorganisms for isoprenoid production. Natural Product Reports, 2008, 25, 656.	5.2	84
165	HipA-Triggered Growth Arrest and Â-Lactam Tolerance in Escherichia coli Are Mediated by RelA-Dependent ppGpp Synthesis. Journal of Bacteriology, 2013, 195, 3173-3182.	1.0	84
166	Engineering Cotton (+)-Î^-Cadinene Synthase to an Altered Function: Germacrene D-4-ol Synthase. Chemistry and Biology, 2006, 13, 91-98.	6.2	83
167	Cyanobacterial carbon metabolism: Fluxome plasticity and oxygen dependence. Biotechnology and Bioengineering, 2017, 114, 1593-1602.	1.7	83
168	Increased β-Carotene Production in Recombinant Escherichia coli Harboring an Engineered Isoprenoid Precursor Pathway with Mevalonate Addition. Biotechnology Progress, 2008, 23, 599-605.	1.3	82
169	Plastid-produced interorgannellar stress signal MEcPP potentiates induction of the unfolded protein response in endoplasmic reticulum. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 6212-6217.	3.3	82
170	A Versatile Microfluidic Device for Automating Synthetic Biology. ACS Synthetic Biology, 2015, 4, 1151-1164.	1.9	81
171	Production of jet fuel precursor monoterpenoids from engineered <i>Escherichia coli</i> . Biotechnology and Bioengineering, 2017, 114, 1703-1712.	1.7	81
172	Anaerobic Central Metabolic Pathways in Shewanella oneidensis MR-1 Reinterpreted in the Light of Isotopic Metabolite Labeling. Journal of Bacteriology, 2007, 189, 894-901.	1.0	80
173	Microbial sensors for small molecules: Development of a mevalonate biosensor. Metabolic Engineering, 2007, 9, 30-38.	3.6	80
174	Selecting RNA aptamers for synthetic biology: investigating magnesium dependence and predicting binding affinity. Nucleic Acids Research, 2010, 38, 2736-2747.	6.5	80
175	Controlling Messenger RNA Stability in Bacteria: Strategies for Engineering Gene Expression. Biotechnology Progress, 1997, 13, 699-708.	1.3	79
176	A Propionate-Inducible Expression System for Enteric Bacteria. Applied and Environmental Microbiology, 2005, 71, 6856-6862.	1.4	79
177	Polyphosphate kinase genes from full-scale activated sludge plants. Applied Microbiology and Biotechnology, 2007, 77, 167-173.	1.7	78
178	Exploiting the Substrate Promiscuity of Hydroxycinnamoyl-CoA:Shikimate Hydroxycinnamoyl Transferase to Reduce Lignin. Plant and Cell Physiology, 2016, 57, 568-579.	1.5	78
179	Autonomous control of metabolic state by a quorum sensing (QS)-mediated regulator for bisabolene production in engineered E. coli. Metabolic Engineering, 2017, 44, 325-336.	3.6	78
180	From Fields to Fuels: Recent Advances in the Microbial Production of Biofuels. ACS Synthetic Biology, 2012, 1, 498-513.	1.9	77

#	Article	IF	CITATIONS
181	Engineering Terpene Biosynthesis in <i>Streptomyces</i> for Production of the Advanced Biofuel Precursor Bisabolene. ACS Synthetic Biology, 2015, 4, 393-399.	1.9	77
182	Structure of a Three-Domain Sesquiterpene Synthase: A Prospective Target for Advanced Biofuels Production. Structure, 2011, 19, 1876-1884.	1.6	76
183	Development of Next Generation Synthetic Biology Tools for Use in <i>Streptomyces venezuelae</i> . ACS Synthetic Biology, 2017, 6, 159-166.	1.9	76
184	Photosynthetic conversion of CO2 to farnesyl diphosphate-derived phytochemicals (amorpha-4,11-diene and squalene) by engineered cyanobacteria. Biotechnology for Biofuels, 2016, 9, 202.	6.2	75
185	Coenzyme Q10 production in recombinant Escherichia coli strains engineered with a heterologous decaprenyl diphosphate synthase gene and foreign mevalonate pathway. Metabolic Engineering, 2006, 8, 406-416.	3.6	74
186	Engineering of l-tyrosine oxidation in Escherichia coli and microbial production of hydroxytyrosol. Metabolic Engineering, 2012, 14, 603-610.	3.6	74
187	Examining Escherichia coli glycolytic pathways, catabolite repression, and metabolite channeling using Δpfk mutants. Biotechnology for Biofuels, 2016, 9, 212.	6.2	74
188	Characterizing Strain Variation in Engineered E.Âcoli Using a Multi-Omics-Based Workflow. Cell Systems, 2016, 2, 335-346.	2.9	73
189	Investigation of Carbon Metabolism in " <i>Dehalococcoides ethenogenes</i> ―Strain 195 by Use of Isotopomer and Transcriptomic Analyses. Journal of Bacteriology, 2009, 191, 5224-5231.	1.0	72
190	Coordinated, Differential Expression of Two Genes through Directed mRNA Cleavage and Stabilization by Secondary Structures. Applied and Environmental Microbiology, 2000, 66, 5399-5405.	1.4	71
191	Production and quantification of sesquiterpenes in Saccharomyces cerevisiae, including extraction, detection and quantification of terpene products and key related metabolites. Nature Protocols, 2014, 9, 1980-1996.	5.5	71
192	Loss of Inositol Phosphorylceramide Sphingolipid Mannosylation Induces Plant Immune Responses and Reduces Cellulose Content in Arabidopsis. Plant Cell, 2016, 28, 2991-3004.	3.1	71
193	A tightly regulated inducible expression system utilizing thefim inversion recombination switch. Biotechnology and Bioengineering, 2006, 94, 1-4.	1.7	70
194	Engineered polyketides: Synergy between protein and host level engineering. Synthetic and Systems Biotechnology, 2017, 2, 147-166.	1.8	70
195	Engineering a Polyketide Synthase for <i>In Vitro</i> Production of Adipic Acid. ACS Synthetic Biology, 2016, 5, 21-27.	1.9	69
196	Synthetic Pathway for Production of Five-Carbon Alcohols from Isopentenyl Diphosphate. Applied and Environmental Microbiology, 2012, 78, 7849-7855.	1.4	68
197	Impact of elevated nitrate on sulfate-reducing bacteria: a comparative Study of <i>Desulfovibrio vulgaris</i> . ISME Journal, 2010, 4, 1386-1397.	4.4	67
198	Transcriptomic and proteomic analyses of Desulfovibrio vulgaris biofilms: Carbon and energy flow contribute to the distinct biofilm growth state. BMC Genomics, 2012, 13, 138.	1.2	67

#	Article	IF	CITATIONS
199	Synthetic biology for microbial production of lipid-based biofuels. Current Opinion in Chemical Biology, 2015, 29, 58-65.	2.8	67
200	Genome-scale metabolic rewiring improves titers rates and yields of the non-native product indigoidine at scale. Nature Communications, 2020, 11, 5385.	5.8	67
201	Capillary Electrophoresis-Fourier Transform Ion Cyclotron Resonance Mass Spectrometry for the Identification of Cationic Metabolites via a pH-Mediated Stacking-Transient Isotachophoretic Method. Analytical Chemistry, 2008, 80, 3112-3122.	3.2	66
202	Functional responses of methanogenic archaea to syntrophic growth. ISME Journal, 2012, 6, 2045-2055.	4.4	66
203	Engineering an NADPH/NADP ⁺ Redox Biosensor in Yeast. ACS Synthetic Biology, 2016, 5, 1546-1556.	1.9	66
204	Acute Limonene Toxicity in Escherichia coli Is Caused by Limonene Hydroperoxide and Alleviated by a Point Mutation in Alkyl Hydroperoxidase AhpC. Applied and Environmental Microbiology, 2015, 81, 4690-4696.	1.4	65
205	Biodesulfurization of dibenzothiophene inEscherichia coli is enhanced by expression of aVibrio harveyi oxidoreductase gene. Biotechnology and Bioengineering, 2000, 67, 72-79.	1.7	64
206	Global Transcriptional, Physiological, and Metabolite Analyses of the Responses of <i>Desulfovibrio vulgaris</i> Hildenborough to Salt Adaptation. Applied and Environmental Microbiology, 2010, 76, 1574-1586.	1.4	64
207	A Droplet Microfluidic Platform for Automating Genetic Engineering. ACS Synthetic Biology, 2016, 5, 426-433.	1.9	63
208	Effect of lacY Expression on Homogeneity of Induction from the Ptac and Ptrc Promoters by Natural and Synthetic Inducers. Biotechnology Progress, 2002, 18, 672-674.	1.3	62
209	Organelle Membrane Proteomics Reveals Differential Influence of Mycobacterial Lipoglycans on Macrophage Phagosome Maturation and Autophagosome Accumulation. Journal of Proteome Research, 2011, 10, 339-348.	1.8	62
210	Amplification of HMG-CoA Reductase Production Enhances Carotenoid Accumulation in Neurospora crassa. Metabolic Engineering, 2002, 4, 193-201.	3.6	61
211	A three-dimensional, stochastic simulation of biofilm growth and transport-related factors that affect structure. Microbiology (United Kingdom), 2003, 149, 2859-2871.	0.7	61
212	Analysis of metabolic pathways and fluxes in a newly discovered thermophilic and ethanolâ€ŧolerant <i>Geobacillus</i> strain. Biotechnology and Bioengineering, 2009, 102, 1377-1386.	1.7	61
213	Intracellular cellobiose metabolism and its applications in lignocellulose-based biorefineries. Bioresource Technology, 2017, 239, 496-506.	4.8	61
214	Aerobic sulfide production and cadmium precipitation by Escherichia coli expressing the Treponema denticola cysteine desulfhydrase gene. Applied Microbiology and Biotechnology, 2001, 56, 425-430.	1.7	60
215	Study of nitrate stress in Desulfovibrio vulgaris Hildenborough using iTRAQ proteomics. Briefings in Functional Genomics & Proteomics, 2006, 5, 133-143.	3.8	60
216	Enzyme immobilization via silaffinâ€mediated autoencapsulation in a biosilica support. Biotechnology Progress, 2009, 25, 417-423.	1.3	60

#	Article	IF	CITATIONS
217	Application of an Acyl-CoA Ligase from <i>Streptomyces aizunensis</i> for Lactam Biosynthesis. ACS Synthetic Biology, 2017, 6, 884-890.	1.9	60
218	CasPER, a method for directed evolution in genomic contexts using mutagenesis and CRISPR/Cas9. Metabolic Engineering, 2018, 48, 288-296.	3.6	60
219	Massively Parallel Fitness Profiling Reveals Multiple Novel Enzymes in <i>Pseudomonas putida</i> Lysine Metabolism. MBio, 2019, 10, .	1.8	60
220	Effect of gene location, mRNA secondary structures, and RNase sites on expression of two genes in an engineered operon. Biotechnology and Bioengineering, 2002, 80, 762-776.	1.7	59
221	Recent applications of synthetic biology tools for yeast metabolic engineering. FEMS Yeast Research, 2014, 15, n/a-n/a.	1.1	59
222	Enhanced production of taxadiene in Saccharomyces cerevisiae. Microbial Cell Factories, 2020, 19, 200.	1.9	59
223	ATP citrate lyase mediated cytosolic acetyl-CoA biosynthesis increases mevalonate production in Saccharomyces cerevisiae. Microbial Cell Factories, 2016, 15, 48.	1.9	58
224	Controlling the Metabolic Flux through the Carotenoid Pathway Using Directed mRNA Processing and Stabilization. Metabolic Engineering, 2001, 3, 313-321.	3.6	57
225	Evaluation of the effects of various culture conditions on Cr(VI) reduction byShewanella oneidensis MR-1 in a novel high-throughput mini-bioreactor. Biotechnology and Bioengineering, 2006, 95, 176-184.	1.7	57
226	Whole ell biocatalytic and de novo production of alkanes from free fatty acids in <i>Saccharomyces cerevisiae</i> . Biotechnology and Bioengineering, 2017, 114, 232-237.	1.7	57
227	Lipid engineering reveals regulatory roles for membrane fluidity in yeast flocculation and oxygen-limited growth. Metabolic Engineering, 2017, 41, 46-56.	3.6	57
228	Alleviation of reactive oxygen species enhances PUFA accumulation in Schizochytrium sp. through regulating genes involved in lipid metabolism. Metabolic Engineering Communications, 2018, 6, 39-48.	1.9	57
229	Sustainable bioproduction of the blue pigment indigoidine: Expanding the range of heterologous products in <i>R. toruloides </i> to include non-ribosomal peptides. Green Chemistry, 2019, 21, 3394-3406.	4.6	57
230	Promoter Architecture and Promoter Engineering in Saccharomyces cerevisiae. Metabolites, 2020, 10, 320.	1.3	57
231	A Peptide-Based Method for 13C Metabolic Flux Analysis in Microbial Communities. PLoS Computational Biology, 2014, 10, e1003827.	1.5	56
232	Comprehensive Structural and Biochemical Analysis of the Terminal Myxalamid Reductase Domain for the Engineered Production of Primary Alcohols. Chemistry and Biology, 2015, 22, 1018-1029.	6.2	56
233	Development of a Transcription Factor-Based Lactam Biosensor. ACS Synthetic Biology, 2017, 6, 439-445.	1.9	56
234	High-titer production of lathyrane diterpenoids from sugar by engineered Saccharomyces cerevisiae. Metabolic Engineering, 2018, 45, 142-148.	3.6	56

#	Article	IF	CITATIONS
235	Unnatural biosynthesis by an engineered microorganism with heterologously expressed natural enzymes and an artificial metalloenzyme. Nature Chemistry, 2021, 13, 1186-1191.	6.6	56
236	Flux Analysis of Central Metabolic Pathways in Geobacter metallireducens during Reduction of Soluble Fe(III)-Nitrilotriacetic Acid. Applied and Environmental Microbiology, 2007, 73, 3859-3864.	1.4	55
237	Production of anteiso-branched fatty acids in Escherichia coli; next generation biofuels with improved cold-flow properties. Metabolic Engineering, 2014, 26, 111-118.	3.6	55
238	Enhancing Terpene Yield from Sugars via Novel Routes to 1-Deoxy- <scp>d</scp> -Xylulose 5-Phosphate. Applied and Environmental Microbiology, 2015, 81, 130-138.	1.4	55
239	Leveraging microbial biosynthetic pathways for the generation of â€~drop-in' biofuels. Current Opinion in Biotechnology, 2017, 45, 156-163.	3.3	55
240	ClusterCAD: a computational platform for type I modular polyketide synthase design. Nucleic Acids Research, 2018, 46, D509-D515.	6.5	55
241	Effects of the sequence and size of non-polar residues on self-assembly of amphiphilic peptides. International Journal of Biological Macromolecules, 2005, 36, 232-240.	3.6	54
242	Quantitative Proteomic Profiling of Hostâ^'Pathogen Interactions: The Macrophage Response to <i>Mycobacterium tuberculosis</i> Lipids. Journal of Proteome Research, 2009, 8, 282-289.	1.8	54
243	End-to-end automated microfluidic platform for synthetic biology: from design to functional analysis. Journal of Biological Engineering, 2016, 10, 3.	2.0	54
244	Leveling the cost and carbon footprint of circular polymers that are chemically recycled to monomer. Science Advances, 2021, 7, .	4.7	54
245	mRNA stability and plasmid copy number effects on gene expression from an inducible promoter system. , 1998, 59, 666-672.		53
246	Engineering Hydrogen Sulfide Production and Cadmium Removal by Expression of the Thiosulfate Reductase Gene (phsABC) from Salmonella enterica Serovar Typhimurium in Escherichia coli. Applied and Environmental Microbiology, 2000, 66, 3939-3944.	1.4	53
247	Self-Assembly of a Designed Protein Polymer into β-Sheet Fibrils and Responsive Gels. Macromolecules, 2003, 36, 2932-2938.	2.2	53
248	Mineralization of Paraoxon and Its Use as a Sole C and P Source by a Rationally Designed Catabolic Pathway in Pseudomonas putida. Applied and Environmental Microbiology, 2006, 72, 6699-6706.	1.4	53
249	Redesigning Enzymes Based on Adaptive Evolution for Optimal Function in Synthetic Metabolic Pathways. Chemistry and Biology, 2008, 15, 607-618.	6.2	53
250	Manipulation of the carbon storage regulator system for metabolite remodeling and biofuel production in Escherichia coli. Microbial Cell Factories, 2012, 11, 79.	1.9	53
251	Substantial improvements in methyl ketone production in E. coli and insights on the pathway from in vitro studies. Metabolic Engineering, 2014, 26, 67-76.	3.6	53
252	A Method to Constrain Genome-Scale Models with 13C Labeling Data. PLoS Computational Biology, 2015, 11, e1004363.	1.5	53

#	Article	IF	CITATIONS
253	Development of an E. coli strain for one-pot biofuel production from ionic liquid pretreated cellulose and switchgrass. Green Chemistry, 2016, 18, 4189-4197.	4.6	52
254	Short-chain ketone production by engineered polyketide synthases in Streptomyces albus. Nature Communications, 2018, 9, 4569.	5.8	52
255	Fatty Acid and Alcohol Metabolism in Pseudomonas putida: Functional Analysis Using Random Barcode Transposon Sequencing. Applied and Environmental Microbiology, 2020, 86, .	1.4	52
256	Narrowing the gap between the promise and reality of polyketide synthases as a synthetic biology platform. Current Opinion in Biotechnology, 2014, 30, 32-39.	3.3	51
257	Catabolite Repression of the Propionate Catabolic Genes in Escherichia coli and Salmonella enterica : Evidence for Involvement of the Cyclic AMP Receptor Protein. Journal of Bacteriology, 2005, 187, 2793-2800.	1.0	50
258	An Orthogonal and pH-Tunable Sensor-Selector for Muconic Acid Biosynthesis in Yeast. ACS Synthetic Biology, 2018, 7, 995-1003.	1.9	50
259	Metabolic flux analysis of <i>Shewanella</i> spp. reveals evolutionary robustness in central carbon metabolism. Biotechnology and Bioengineering, 2009, 102, 1161-1169.	1.7	49
260	Absence of Diauxie during Simultaneous Utilization of Glucose and Xylose by <i>Sulfolobus acidocaldarius</i> . Journal of Bacteriology, 2011, 193, 1293-1301.	1.0	49
261	Overlapping Photoprotective Function of Vitamin E and Carotenoids in <i>Chlamydomonas</i> Â Â Â. Plant Physiology, 2012, 158, 313-323.	2.3	49
262	Engineering of a Tyrosol-Producing Pathway, Utilizing Simple Sugar and the Central Metabolic Tyrosine, in Escherichia coli. Journal of Agricultural and Food Chemistry, 2012, 60, 979-984.	2.4	49
263	Analysis of plant nucleotide sugars by hydrophilic interaction liquid chromatography and tandem mass spectrometry. Analytical Biochemistry, 2014, 448, 14-22.	1.1	49
264	New frontiers: harnessing pivotal advances in microbial engineering for the biosynthesis of plant-derived terpenoids. Current Opinion in Biotechnology, 2020, 65, 88-93.	3.3	49
265	Reductive dechlorination of chlorinated ethene DNAPLs by a culture enriched from contaminated groundwater. , 1999, 62, 160-165.		48
266	Analysis of Amino Acid Isotopomers Using FT-ICR MS. Analytical Chemistry, 2007, 79, 2483-2490.	3.2	48
267	Production of hydroxycinnamoyl anthranilates from glucose in Escherichia coli. Microbial Cell Factories, 2013, 12, 62.	1.9	48
268	Discovery of enzymes for toluene synthesis from anoxic microbial communities. Nature Chemical Biology, 2018, 14, 451-457.	3.9	47
269	Hydrogen peroxideâ€induced oxidative stress responses in <i>Desulfovibrio vulgaris</i> Hildenborough. Environmental Microbiology, 2010, 12, 2645-2657.	1.8	46
270	Characterization of NaCl tolerance in <i>Desulfovibrio vulgaris</i> Hildenborough through experimental evolution. ISME Journal, 2013, 7, 1790-1802.	4.4	46

#	Article	IF	CITATIONS
271	PaR-PaR Laboratory Automation Platform. ACS Synthetic Biology, 2013, 2, 216-222.	1.9	46
272	Arabinosylation of a Yariv-Precipitable Cell Wall Polymer Impacts Plant Growth as Exemplified by the Arabidopsis Glycosyltransferase Mutant ray1. Molecular Plant, 2013, 6, 1369-1372.	3.9	46
273	Engineering a functional 1-deoxy-D-xylulose 5-phosphate (DXP) pathway in Saccharomyces cerevisiae. Metabolic Engineering, 2016, 38, 494-503.	3.6	46
274	Optimization of the IPP-bypass mevalonate pathway and fed-batch fermentation for the production of isoprenol in Escherichia coli. Metabolic Engineering, 2019, 56, 85-96.	3.6	46
275	Sustainable manufacturing with synthetic biology. Nature Biotechnology, 2022, 40, 304-307.	9.4	46
276	Metabolic engineering ofPseudomonas putida for the utilization of parathion as a carbon and energy source. Biotechnology and Bioengineering, 2002, 78, 715-721.	1.7	45
277	A targeted proteomics toolkit for high-throughput absolute quantification of Escherichia coli proteins. Metabolic Engineering, 2014, 26, 48-56.	3.6	45
278	The Experiment Data Depot: A Web-Based Software Tool for Biological Experimental Data Storage, Sharing, and Visualization. ACS Synthetic Biology, 2017, 6, 2248-2259.	1.9	45
279	Investigating Autocatalytic Gene Expression Systems through Mechanistic Modeling. Journal of Theoretical Biology, 1999, 201, 25-36.	0.8	44
280	Development and validation of a flux-based stoichiometric model for enhanced biological phosphorus removal metabolism. Water Research, 1999, 33, 462-476.	5.3	44
281	Global analysis of host response to induction of a latent bacteriophage. BMC Microbiology, 2007, 7, 82.	1.3	44
282	Addressing the Need for Alternative Transportation Fuels: The Joint BioEnergy Institute. ACS Chemical Biology, 2008, 3, 17-20.	1.6	44
283	Polyphosphate Binding and Chain Length Recognition ofEscherichia coli Exopolyphosphatase. Journal of Biological Chemistry, 2000, 275, 33814-33819.	1.6	43
284	Heterologous production of polyketides by modular type I polyketide synthases in Escherichia coli. Current Opinion in Biotechnology, 2012, 23, 727-735.	3.3	43
285	The Need for Integrated Approaches in Metabolic Engineering. Cold Spring Harbor Perspectives in Biology, 2016, 8, a023903.	2.3	43
286	Renewable production of high density jet fuel precursor sesquiterpenes from Escherichia coli. Biotechnology for Biofuels, 2018, 11, 285.	6.2	43
287	Biochemical and Structural Studies of NADH-Dependent FabG Used To Increase the Bacterial Production of Fatty Acids under Anaerobic Conditions. Applied and Environmental Microbiology, 2014, 80, 497-505.	1.4	42
288	Development of an orthogonal fatty acid biosynthesis system in E. coli for oleochemical production. Metabolic Engineering, 2015, 30, 1-6.	3.6	42

#	Article	IF	CITATIONS
289	A kineticâ€based approach to understanding heterologous mevalonate pathway function in <i>E. coli</i> . Biotechnology and Bioengineering, 2015, 112, 111-119.	1.7	42
290	13C Metabolic Flux Analysis for Systematic Metabolic Engineering of S. cerevisiae for Overproduction of Fatty Acids. Frontiers in Bioengineering and Biotechnology, 2016, 4, 76.	2.0	42
291	A Pseudomonas putida efflux pump acts on short-chain alcohols. Biotechnology for Biofuels, 2018, 11, 136.	6.2	42
292	Modulation of gene expression from the arabinose-inducible araBAD promoter. Journal of Industrial Microbiology and Biotechnology, 2002, 29, 34-37.	1.4	41
293	PR-PR: Cross-Platform Laboratory Automation System. ACS Synthetic Biology, 2014, 3, 515-524.	1.9	41
294	Molecular basis for interactions between an acyl carrier protein and a ketosynthase. Nature Chemical Biology, 2019, 15, 669-671.	3.9	41
295	Leveraging host metabolism for bisdemethoxycurcumin production in Pseudomonas putida. Metabolic Engineering Communications, 2020, 10, e00119.	1.9	41
296	A Dynamic Model of theEscherichia coliPhosphate-Starvation Response. Journal of Theoretical Biology, 1998, 190, 37-49.	0.8	40
297	Production of tranilast [N-(3′,4′-dimethoxycinnamoyl)-anthranilic acid] and its analogs in yeast Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 2011, 89, 989-1000.	1.7	40
298	Acid enhanced ionic liquid pretreatment of biomass. Green Chemistry, 2013, 15, 1264.	4.6	40
299	Impact of Pretreatment Technologies on Saccharification and Isopentenol Fermentation of Mixed Lignocellulosic Feedstocks. Bioenergy Research, 2015, 8, 1004-1013.	2.2	40
300	Construction and characterization of F plasmid-based expression vectors. Biotechnology and Bioengineering, 1998, 59, 659-665.	1.7	39
301	Morphology of Artificial Silica Matrices Formed via Autosilification of a Silaffin/Protein Polymer Chimera. Biomacromolecules, 2008, 9, 1-5.	2.6	39
302	Tracing Determinants of Dual Substrate Specificity in Glycoside Hydrolase Family 5. Journal of Biological Chemistry, 2012, 287, 25335-25343.	1.6	39
303	Mechanistic Analysis of an Engineered Enzyme that Catalyzes the Formose Reaction. ChemBioChem, 2015, 16, 1950-1954.	1.3	39
304	Toward industrial production of isoprenoids in <i>Escherichia coli</i> : Lessons learned from CRISPR as9 based optimization of a chromosomally integrated mevalonate pathway. Biotechnology and Bioengineering, 2018, 115, 1000-1013.	1.7	39
305	Engineering β-oxidation in Yarrowia lipolytica for methyl ketone production. Metabolic Engineering, 2018, 48, 52-62.	3.6	39
306	Coupling S-adenosylmethionine–dependent methylation to growth: Design and uses. PLoS Biology, 2019, 17, e2007050.	2.6	39

#	Article	IF	CITATIONS
307	Optimizing the biosynthesis of oxygenated and acetylated Taxol precursors in <i>Saccharomyces cerevisiae</i> using advanced bioprocessing strategies. Biotechnology and Bioengineering, 2021, 118, 279-293.	1.7	39
308	DeviceEditor visual biological CAD canvas. Journal of Biological Engineering, 2012, 6, 1.	2.0	39
309	Functional characterization of four sesquiterpene synthases from Ricinus communis (Castor bean). Phytochemistry, 2012, 78, 20-28.	1.4	38
310	High-throughput enzyme screening platform for the IPP-bypass mevalonate pathway for isopentenol production. Metabolic Engineering, 2017, 41, 125-134.	3.6	38
311	Overexpression of a rice BAHD acyltransferase gene in switchgrass (Panicum virgatum L.) enhances saccharification. BMC Biotechnology, 2018, 18, 54.	1.7	38
312	Biosynthesis of polycyclopropanated high energy biofuels. Joule, 2022, 6, 1590-1605.	11.7	38
313	Engineering mRNA stability inE. coli by the addition of synthetic hairpins using a 5′ cassette system. , 1997, 55, 577-580.		37
314	A microfabricated electrochemical oxygen generator for high-density cell culture arrays. Journal of Microelectromechanical Systems, 2003, 12, 590-599.	1.7	37
315	Broad Substrate Specificity of the Loading Didomain of the Lipomycin Polyketide Synthase. Biochemistry, 2013, 52, 3791-3793.	1.2	37
316	Engineering temporal accumulation of a low recalcitrance polysaccharide leads to increased C6 sugar content in plant cell walls. Plant Biotechnology Journal, 2015, 13, 903-914.	4.1	37
317	Interlaboratory study to evaluate the robustness of capillary electrophoresisâ€mass spectrometry for peptide mapping. Journal of Separation Science, 2015, 38, 3262-3270.	1.3	36
318	Improved Assembly of Multimeric Genes for the Biosynthetic Production of Protein Polymers. Biomacromolecules, 2002, 3, 874-879.	2.6	35
319	Activation and inhibition of rubber transferases by metal cofactors and pyrophosphate substrates. Phytochemistry, 2003, 64, 123-134.	1.4	35
320	Central metabolism in Mycobacterium smegmatis during the transition from O2-rich to O2-poor conditions as studied by isotopomer-assisted metabolite analysis. Biotechnology Letters, 2009, 31, 1233-1240.	1.1	35
321	Isolation and characterization of novel mutations in the pSC101 origin that increase copy number. Scientific Reports, 2018, 8, 1590.	1.6	35
322	Production efficiency of the bacterial non-ribosomal peptide indigoidine relies on the respiratory metabolic state in S. cerevisiae. Microbial Cell Factories, 2018, 17, 193.	1.9	35
323	Effect of copy number and mRNA processing and stabilization on transcript and protein levels from an engineered dual-gene operon. Biotechnology and Bioengineering, 2002, 78, 412-424.	1.7	34
324	Invariability of central metabolic flux distribution in <i>Shewanella oneidensis</i> MRâ€1 under environmental or genetic perturbations. Biotechnology Progress, 2009, 25, 1254-1259.	1.3	34

#	Article	IF	CITATIONS
325	Metabolic engineering of Escherichia coli for the biosynthesis of 2-pyrrolidone. Metabolic Engineering Communications, 2016, 3, 1-7.	1.9	34
326	Engineering glucose metabolism of Escherichia coli under nitrogen starvation. Npj Systems Biology and Applications, 2017, 3, 16035.	1.4	34
327	Deciphering flux adjustments of engineered E. coli cells during fermentation with changing growth conditions. Metabolic Engineering, 2017, 39, 247-256.	3.6	33
328	Exploiting members of the BAHD acyltransferase family to synthesize multiple hydroxycinnamate and benzoate conjugates in yeast. Microbial Cell Factories, 2016, 15, 198.	1.9	32
329	Automated "Cells-To-Peptides―Sample Preparation Workflow for High-Throughput, Quantitative Proteomic Assays of Microbes. Journal of Proteome Research, 2019, 18, 3752-3761.	1.8	32
330	Uranyl precipitation by biomass from an enhanced biological phosphorus removal reactor. Biodegradation, 2001, 12, 401-410.	1.5	31
331	Development of a Native Escherichia coli Induction System for Ionic Liquid Tolerance. PLoS ONE, 2014, 9, e101115.	1.1	31
332	Switchable ionic liquids based on di-carboxylic acids for one-pot conversion of biomass to an advanced biofuel. Green Chemistry, 2016, 18, 4012-4021.	4.6	31
333	Identification, Characterization, and Application of a Highly Sensitive Lactam Biosensor from <i>Pseudomonas putida</i> . ACS Synthetic Biology, 2020, 9, 53-62.	1.9	31
334	Regulation of Rubber Biosynthetic Rate and Molecular Weight inHeveabrasiliensisby Metal Cofactor. Biomacromolecules, 2005, 6, 279-289.	2.6	30
335	Structural and functional analysis of two di-domain aromatase/cyclases from type II polyketide synthases. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E6844-51.	3.3	30
336	A Monte Carlo Simulation of theEscherichia coliCell Cycle. Journal of Theoretical Biology, 1995, 176, 411-430.	0.8	29
337	Gene Cloning, Purification, and Characterization of a Phosphodiesterase from Delftia acidovorans. Applied and Environmental Microbiology, 2003, 69, 504-508.	1.4	29
338	Dibenzothiophene biodesulfurization pathway improvement using diagnostic GFP fusions. Biotechnology and Bioengineering, 2004, 88, 94-99.	1.7	29
339	Production of Odd-Carbon Dicarboxylic Acids in Escherichia coli Using an Engineered Biotin–Fatty Acid Biosynthetic Pathway. Journal of the American Chemical Society, 2017, 139, 4615-4618.	6.6	29
340	Microbially derived artemisinin: a biotechnology solution to the global problem of access to affordable antimalarial drugs. American Journal of Tropical Medicine and Hygiene, 2007, 77, 198-202.	0.6	29
341	Recombinant DNA techniques for bioremediation and environmentally-friendly synthesis. Current Opinion in Biotechnology, 1998, 9, 135-140.	3.3	28
342	Development of engineered biofilms on poly- L-lysine patterned surfaces. Biotechnology Letters, 2001, 23, 1235-1241.	1.1	28

#	Article	IF	CITATIONS
343	Pathway engineering by designed divergent evolution. Current Opinion in Chemical Biology, 2007, 11, 233-239.	2.8	28
344	Physical and Functional Interactions of a Monothiol Glutaredoxin and an Iron Sulfur Cluster Carrier Protein with the Sulfur-donating Radical S-Adenosyl-I-methionine Enzyme MiaB. Journal of Biological Chemistry, 2013, 288, 14200-14211.	1.6	28
345	Identification of a cyclic-di-GMP-modulating response regulator that impacts biofilm formation in a model sulfate reducing bacterium. Frontiers in Microbiology, 2014, 5, 382.	1.5	28
346	Constructing Tailored Isoprenoid Products by Structure-Guided Modification of Geranylgeranyl Reductase. Structure, 2014, 22, 1028-1036.	1.6	28
347	Divergent Mechanistic Routes for the Formation of <i>gem</i> â€Dimethyl Groups in the Biosynthesis of Complex Polyketides. Angewandte Chemie - International Edition, 2015, 54, 2370-2373.	7.2	28
348	Distinct functional roles for hopanoid composition in the chemical tolerance of <i>Zymomonas mobilis</i> . Molecular Microbiology, 2019, 112, 1564-1575.	1.2	28
349	Mechanistic Modeling of Prokaryotic mRNA Decay. Journal of Theoretical Biology, 1997, 189, 195-209.	0.8	27
350	Optimization of DsRed production inEscherichia coli: Effect of ribosome binding site sequestration on translation efficiency. Biotechnology and Bioengineering, 2005, 92, 553-558.	1.7	27
351	Supplementation of Intracellular XylR Leads to Coutilization of Hemicellulose Sugars. Applied and Environmental Microbiology, 2012, 78, 2221-2229.	1.4	27
352	A Highâ€Throughput Mass Spectrometric Enzyme Activity Assay Enabling the Discovery of Cytochrome P450 Biocatalysts. Angewandte Chemie - International Edition, 2019, 58, 10114-10119.	7.2	27
353	A deep-sea hydrothermal vent isolate, Pseudomonas aeruginosa CW961, requires thiosulfate for Cd tolerance and precipitation. Biotechnology Letters, 2002, 24, 637-641.	1.1	26
354	Laser Spectroscopic Studies of Interactions of UVI with Bacterial Phosphate Species. Chemistry - A European Journal, 2003, 9, 2812-2818.	1.7	26
355	Propionate-regulated high-yield protein production inEscherichia coli. Biotechnology and Bioengineering, 2006, 93, 912-918.	1.7	26
356	Study of stationary phase metabolism via isotopomer analysis of amino acids from an isolated protein. Biotechnology Progress, 2010, 26, 52-56.	1.3	26
357	High-Resolution Scanning of Optimal Biosensor Reporter Promoters in Yeast. ACS Synthetic Biology, 2020, 9, 218-226.	1.9	26
358	Enhancing Terminal Deoxynucleotidyl Transferase Activity on Substrates with 3′ Terminal Structures for Enzymatic De Novo DNA Synthesis. Genes, 2020, 11, 102.	1.0	26
359	Engineering yeast metabolism for the discovery and production of polyamines and polyamine analogues. Nature Catalysis, 2021, 4, 498-509.	16.1	26
360	Investigation of Proposed Ladderane Biosynthetic Genes from Anammox Bacteria by Heterologous Expression in E. coli. PLoS ONE, 2016, 11, e0151087.	1.1	26

#	Article	IF	CITATIONS
361	Isotopomer Distributions in Amino Acids from a Highly Expressed Protein as a Proxy for Those from Total Protein. Analytical Chemistry, 2008, 80, 886-890.	3.2	25
362	Mutations in Escherichia coli aceE and ribB Genes Allow Survival of Strains Defective in the First Step of the Isoprenoid Biosynthesis Pathway. PLoS ONE, 2012, 7, e43775.	1.1	25
363	System-level perturbations of cell metabolism using CRISPR/Cas9. Current Opinion in Biotechnology, 2017, 46, 134-140.	3.3	25
364	Oxidative cyclization of prodigiosin by an alkylglycerol monooxygenase-like enzyme. Nature Chemical Biology, 2017, 13, 1155-1157.	3.9	25
365	Synthetic biology of polyketide synthases. Journal of Industrial Microbiology and Biotechnology, 2018, 45, 621-633.	1.4	25
366	Omics-driven identification and elimination of valerolactam catabolism in Pseudomonas putida KT2440 for increased product titer. Metabolic Engineering Communications, 2019, 9, e00098.	1.9	25
367	A rapid and inexpensive labeling method for microarray gene expression analysis. BMC Biotechnology, 2009, 9, 97.	1.7	24
368	Diterpene production in <i>Mycobacteriumâ€∫tuberculosis</i> . FEBS Journal, 2010, 277, 3588-3595.	2.2	24
369	Use of Nonionic Surfactants for Improvement of Terpene Production in Saccharomyces cerevisiae. Applied and Environmental Microbiology, 2014, 80, 6685-6693.	1.4	24
370	Optimization of renewable pinene production from the conversion of macroalgae Saccharina latissima. Bioresource Technology, 2015, 184, 415-420.	4.8	24
371	Alteration of Polyketide Stereochemistry from <i>anti</i> to <i>syn</i> by a Ketoreductase Domain Exchange in a Type I Modular Polyketide Synthase Subunit. Biochemistry, 2016, 55, 1677-1680.	1.2	23
372	Investigation of Indigoidine Synthetase Reveals a Conserved Active-Site Base Residue of Nonribosomal Peptide Synthetase Oxidases. Journal of the American Chemical Society, 2020, 142, 10931-10935.	6.6	23
373	Response of <i>Pseudomonas putida</i> to Complex, Aromaticâ€Rich Fractions from Biomass. ChemSusChem, 2020, 13, 4455-4467.	3.6	23
374	Kinetics of toluene degradation by a nitrate-reducing bacterium isolated from a groundwater aquifer. , 1997, 55, 82-90.		22
375	From yeast to alkaloids. Nature Chemical Biology, 2008, 4, 524-525.	3.9	22
376	Expression profiling of hypothetical genes in Desulfovibrio vulgaris leads to improved functional annotation. Nucleic Acids Research, 2009, 37, 2926-2939.	6.5	22
377	Mevalonate Pathway Promiscuity Enables Noncanonical Terpene Production. ACS Synthetic Biology, 2019, 8, 2238-2247.	1.9	22
378	Engineering Plant Synthetic Pathways for the Biosynthesis of Novel Antifungals. ACS Central Science, 2020, 6, 1394-1400.	5.3	22

#	Article	IF	CITATIONS
379	Integrating continuous hypermutation with highâ€throughput screening for optimization of <i>cis,cis</i> â€muconic acid production in yeast. Microbial Biotechnology, 2021, 14, 2617-2626.	2.0	22
380	Title is missing!. Biotechnology Letters, 2000, 22, 1331-1335.	1.1	21
381	Mass Spectrometry-Based Microbial Metabolomics. Methods in Molecular Biology, 2012, 881, 215-278.	0.4	21
382	Application of targeted proteomics to metabolically engineered <i><scp>E</scp>scherichia coli</i> . Proteomics, 2012, 12, 1289-1299.	1.3	21
383	<i>In Vitro</i> Analysis of Carboxyacyl Substrate Tolerance in the Loading and First Extension Modules of Borrelidin Polyketide Synthase. Biochemistry, 2014, 53, 5975-5977.	1.2	21
384	OpenMSI Arrayed Analysis Toolkit: Analyzing Spatially Defined Samples Using Mass Spectrometry Imaging. Analytical Chemistry, 2017, 89, 5818-5823.	3.2	21
385	De novo synthesis of the sedative valerenic acid in Saccharomyces cerevisiae. Metabolic Engineering, 2018, 47, 94-101.	3.6	21
386	Probing the Flexibility of an Iterative Modular Polyketide Synthase with Non-Native Substrates <i>in Vitro</i> . ACS Chemical Biology, 2018, 13, 2261-2268.	1.6	21
387	Microbioreactor arrays with parametric control for high-throughput experimentation. Biotechnology and Bioengineering, 2004, 86, 485-90.	1.7	21
388	Heterologous protein production in Escherichia coli using the propionate-inducible pPro system by conventional and auto-induction methods. Protein Expression and Purification, 2008, 61, 197-203.	0.6	20
389	Encoding substrates with mass tags to resolve stereospecific reactions using Nimzyme. Rapid Communications in Mass Spectrometry, 2012, 26, 611-615.	0.7	20
390	A synthetic promoter system for well-controlled protein expression with different carbon sources in Saccharomyces cerevisiae. Microbial Cell Factories, 2021, 20, 202.	1.9	20
391	ColE1 plasmid replication: A simple kinetic description from a structured model. Journal of Theoretical Biology, 1989, 141, 447-461.	0.8	19
392	A Monte Carlo simulation of plasmid replication during the bacterial division cycle. , 2000, 52, 633-647.		19
393	Marker and promoter effects on heterologous expression in Aspergillus nidulans. Applied Microbiology and Biotechnology, 2006, 72, 1014-1023.	1.7	19
394	Expression of a synthetic Artemesia annua amorphadiene synthase in Aspergillus nidulans yields altered product distribution. Journal of Industrial Microbiology and Biotechnology, 2008, 35, 1191-1198.	1.4	19
395	Targeted Proteomics for Metabolic Pathway Optimization. Methods in Molecular Biology, 2012, 944, 237-249.	0.4	19
396	Insights into polyketide biosynthesis gained from repurposing antibiotic-producing polyketide synthases to produce fuels and chemicals. Journal of Antibiotics, 2016, 69, 494-499.	1.0	19

#	Article	IF	CITATIONS
397	The JBEI quantitative metabolic modeling library (jQMM): a python library for modeling microbial metabolism. BMC Bioinformatics, 2017, 18, 205.	1.2	19
398	A combinatorial approach to synthetic transcription factorâ€promoter combinations for yeast strain engineering. Yeast, 2018, 35, 273-280.	0.8	19
399	Polyketide mimetics yield structural and mechanistic insights into product template domain function in nonreducing polyketide synthases. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E4142-E4148.	3.3	18
400	Bio-based production of fuels and industrial chemicals by repurposing antibiotic-producing type I modular polyketide synthases: opportunities and challenges. Journal of Antibiotics, 2017, 70, 378-385.	1.0	18
401	Initiator-independent and initiator-dependent rubber biosynthesis in Ficus elastica. Archives of Biochemistry and Biophysics, 2006, 448, 13-22.	1.4	17
402	A framework and model system to investigate linear system behavior in Escherichia coli. Journal of Biological Engineering, 2011, 5, 3.	2.0	17
403	Biochemical production of ethanol and fatty acid ethyl esters from switchgrass: A comparative analysis of environmental and economic performance. Biomass and Bioenergy, 2013, 49, 49-62.	2.9	17
404	Synthesis of Cycloprodigiosin Identifies the Natural Isolate as a Scalemic Mixture. Organic Letters, 2015, 17, 3474-3477.	2.4	17
405	Technical Advances to Accelerate Modular Type I Polyketide Synthase Engineering towards a Retro-biosynthetic Platform. Biotechnology and Bioprocess Engineering, 2019, 24, 413-423.	1.4	17
406	Robust Characterization of Two Distinct Glutarate Sensing Transcription Factors of <i>Pseudomonas putida</i> <scp>l</scp> -Lysine Metabolism. ACS Synthetic Biology, 2019, 8, 2385-2396.	1.9	17
407	A rapid methods development workflow for high-throughput quantitative proteomic applications. PLoS ONE, 2019, 14, e0211582.	1.1	17
408	Regulatory control circuits for stabilizing long-term anabolic product formation in yeast. Metabolic Engineering, 2020, 61, 369-380.	3.6	17
409	Directed evolution of VanR biosensor specificity in yeast. Biotechnology Notes, 2020, 1, 9-15.	0.7	17
410	A synthetic RNA-mediated evolution system in yeast. Nucleic Acids Research, 2021, 49, e88-e88.	6.5	17
411	The Design-Build-Test-Learn cycle for metabolic engineering of Streptomycetes. Essays in Biochemistry, 2021, 65, 261-275.	2.1	17
412	Magnesium ion regulation of in vitro rubber biosynthesis by Parthenium argentatum Gray. Phytochemistry, 2006, 67, 1621-1628.	1.4	16
413	Kinetics of Phosphomevalonate Kinase from Saccharomyces cerevisiae. PLoS ONE, 2014, 9, e87112.	1.1	16
414	Structural and Biochemical Analysis of Protein–Protein Interactions Between the Acylâ€Carrier Protein and Product Template Domain. Angewandte Chemie - International Edition, 2016, 55, 13005-13009.	7.2	16

#	Article	lF	CITATIONS
415	Assembly and Evolution of Artificial Metalloenzymes within <i>E. coli</i> Nissle 1917 for Enantioselective and Site-Selective Functionalization of C─H and Câ•C Bonds. Journal of the American Chemical Society, 2022, 144, 883-890.	6.6	16
416	Analysis of an engineered sulfate reduction pathway and cadmium precipitation on the cell surface. Biotechnology and Bioengineering, 2001, 75, 285-291.	1.7	15
417	Synthetic Biology in Pursuit of Inexpensive, Effective, Anti-Malarial Drugs. BioSocieties, 2009, 4, 275-282.	0.8	15
418	Construction of a Part of a 3-Hydroxypropionate Cycle for Heterologous Polyketide Biosynthesis in <i>Escherichia coli</i> . Biochemistry, 2012, 51, 9779-9781.	1.2	15
419	Endoribonuclease-Based Two-Component Repressor Systems for Tight Gene Expression Control in Plants. ACS Synthetic Biology, 2017, 6, 806-816.	1.9	15
420	Improving methyl ketone production in <i>Escherichia coli</i> by heterologous expression of NADHâ€dependent FabG. Biotechnology and Bioengineering, 2018, 115, 1161-1172.	1.7	15
421	Modular 5′-UTR hexamers for context-independent tuning of protein expression in eukaryotes. Nucleic Acids Research, 2018, 46, e127.	6.5	15
422	High titer methyl ketone production with tailored Pseudomonas taiwanensis VLB120. Metabolic Engineering, 2020, 62, 84-94.	3.6	15
423	A Salmonella-based, propionate-inducible, expression system for Salmonella enterica. Gene, 2006, 377, 6-11.	1.0	14
424	Versatile synthesis of probes for high-throughput enzyme activity screening. Analytical and Bioanalytical Chemistry, 2013, 405, 4969-4973.	1.9	14
425	Application of targeted proteomics and biological parts assembly in E. coli to optimize the biosynthesis of an anti-malarial drug precursor, amorpha-4,11-diene. Chemical Engineering Science, 2013, 103, 21-28.	1.9	14
426	Engineered Production of Short-Chain Acyl-Coenzyme A Esters in <i>Saccharomyces cerevisiae</i> . ACS Synthetic Biology, 2018, 7, 1105-1115.	1.9	14
427	Insight into the Mechanism of Phenylacetate Decarboxylase (PhdB), a Tolueneâ€Producing Glycyl Radical Enzyme. ChemBioChem, 2020, 21, 663-671.	1.3	14
428	Precursor-Directed Combinatorial Biosynthesis of Cinnamoyl, Dihydrocinnamoyl, and Benzoyl Anthranilates in Saccharomyces cerevisiae. PLoS ONE, 2015, 10, e0138972.	1.1	14
429	Supplying plant natural products by yeast cell factories. Current Opinion in Green and Sustainable Chemistry, 2022, 33, 100567.	3.2	14
430	Generalized Schemes for High-Throughput Manipulation of the Desulfovibrio vulgaris Genome. Applied and Environmental Microbiology, 2011, 77, 7595-7604.	1.4	13
431	Utilizing a highly responsive gene, yhjX, in E. coli based production of 1,4-butanediol. Chemical Engineering Science, 2013, 103, 68-73.	1.9	13
432	Polyketide synthases as a platform for chemical product design. AICHE Journal, 2018, 64, 4201-4207.	1.8	13

#	Article	IF	CITATIONS
433	Liquid Chromatography and Mass Spectrometry Analysis of Isoprenoid Intermediates in Escherichia coli. Methods in Molecular Biology, 2019, 1859, 209-224.	0.4	13
434	Chemoinformatic-Guided Engineering of Polyketide Synthases. Journal of the American Chemical Society, 2020, 142, 9896-9901.	6.6	13
435	Programmable polyketide biosynthesis platform for production of aromatic compounds in yeast. Synthetic and Systems Biotechnology, 2020, 5, 11-18.	1.8	13
436	Effect of Polyphosphate Metabolism on the Escherichia coli Phosphate-Starvation Response. Biotechnology Progress, 1999, 15, 587-593.	1.3	12
437	Chlorxanthomycin, a Fluorescent, Chlorinated, Pentacyclic Pyrene from a Bacillus sp. Applied and Environmental Microbiology, 2002, 68, 4095-4101.	1.4	12
438	Manipulation of intracellular magnesium levels in Saccharomyces cerevisiae with deletion of magnesium transporters. Applied Microbiology and Biotechnology, 2007, 77, 411-425.	1.7	12
439	Heterologous Gene Expression of <i>N</i> -Terminally Truncated Variants of LipPks1 Suggests a Functionally Critical Structural Motif in the <i>N</i> -terminus of Modular Polyketide Synthase. ACS Chemical Biology, 2017, 12, 2725-2729.	1.6	12
440	Engineered Reversal of Function in Glycolytic Yeast Promoters. ACS Synthetic Biology, 2019, 8, 1462-1468.	1.9	12
441	Effect of Glucose or Glycerol as the Sole Carbon Source on Gene Expression from the <i>Salmonella prpBCDE</i> Promoter in <i>Escherichia coli</i> . Biotechnology Progress, 2006, 22, 1547-1551.	1.3	12
442	Towards a Rigorous Network of Protein-Protein Interactions of the Model Sulfate Reducer Desulfovibrio vulgaris Hildenborough. PLoS ONE, 2011, 6, e21470.	1.1	12
443	Post-Translational Modifications of Desulfovibrio vulgaris Hildenborough Sulfate Reduction Pathway Proteins. Journal of Proteome Research, 2008, 7, 2320-2331.	1.8	11
444	Biochemical Characterization of βâ€Amino Acid Incorporation in Fluvirucinâ€B ₂ Biosynthesis. ChemBioChem, 2018, 19, 1391-1395.	1.3	11
445	Design, Engineering, and Characterization of Prokaryotic Ligand-Binding Transcriptional Activators as Biosensors in Yeast. Methods in Molecular Biology, 2018, 1671, 269-290.	0.4	11
446	An iron (II) dependent oxygenase performs the last missing step of plant lysine catabolism. Nature Communications, 2020, 11, 2931.	5.8	11
447	Optimization of polyphosphate degradation and phosphate secretion using hybrid metabolic pathways and engineered host strains. , 1998, 59, 754-761.		10
448	Modulation of the phosphate-starvation response in Escherichia coli by genetic manipulation of the polyphosphate pathways. , 2000, 51, 434-438.		10
449	Understanding the Role of Histidine in the GHSxG Acyltransferase Active Site Motif: Evidence for Histidine Stabilization of the Malonyl-Enzyme Intermediate. PLoS ONE, 2014, 9, e109421.	1.1	10
450	Assay for lignin breakdown based on lignin films: insights into the Fenton reaction with insoluble lignin. Green Chemistry, 2015, 17, 4830-4845.	4.6	10

#	Article	IF	CITATIONS
451	Insights into Complex Oxidation during BE-7585A Biosynthesis: Structural Determination and Analysis of the Polyketide Monooxygenase BexE. ACS Chemical Biology, 2016, 11, 1137-1147.	1.6	10
452	Development of an integrated approach for \hat{I}_{\pm} -pinene recovery and sugar production from loblolly pine using ionic liquids. Green Chemistry, 2017, 19, 1117-1127.	4.6	10
453	Structure and Function of BorB, the Type II Thioesterase from the Borrelidin Biosynthetic Gene Cluster. Biochemistry, 2020, 59, 1630-1639.	1.2	10
454	Dual-Selection for Evolution of In Vivo Functional Aptazymes as Riboswitch Parts. Methods in Molecular Biology, 2014, 1111, 221-235.	0.4	10
455	Cycle-specific replication of chromosomal and F-plasmid origins. FEMS Microbiology Letters, 1998, 163, 217-222.	0.7	9
456	Structure of FabH and factors affecting the distribution of branched fatty acids in <i>Micrococcus luteus</i> . Acta Crystallographica Section D: Biological Crystallography, 2012, 68, 1320-1328.	2.5	9
457	Commodity Chemicals From Engineered Modular Type I Polyketide Synthases. Methods in Enzymology, 2018, 608, 393-415.	0.4	9
458	Synthetic Biology for Fundamental Biochemical Discovery. Biochemistry, 2019, 58, 1464-1469.	1.2	9
459	Structural Mechanism of Regioselectivity in an Unusual Bacterial Acyl-CoA Dehydrogenase. Journal of the American Chemical Society, 2020, 142, 835-846.	6.6	9
460	Investigation of Bar-seq as a method to study population dynamics of Saccharomyces cerevisiae deletion library during bioreactor cultivation. Microbial Cell Factories, 2020, 19, 167.	1.9	9
461	Adenosine Triphosphate and Carbon Efficient Route to Second Generation Biofuel Isopentanol. ACS Synthetic Biology, 2020, 9, 468-474.	1.9	9
462	A Reporter System for Cytosolic Protein Aggregates in Yeast. ACS Synthetic Biology, 2021, 10, 466-477.	1.9	9
463	Ultrasonic Flexural-Plate-Wave Sensor for Detecting the Concentration of SettlingE.coliW3110 Cells. Analytical Chemistry, 1999, 71, 3622-3625.	3.2	8
464	A Simple Method for Enzymatic Synthesis of Unlabeled and Radiolabeled Hydroxycinnamate-CoA. Bioenergy Research, 2010, 3, 115-122.	2.2	8
465	Enzyme analysis of the polyketide synthase leads to the discovery of a novel analog of the antibiotic α-lipomycin. Journal of Antibiotics, 2014, 67, 199-201.	1.0	8
466	Synthetic biology: A global approach. Nature, 2014, 510, 218-218.	13.7	8
467	Expression of S-adenosylmethionine Hydrolase in Tissues Synthesizing Secondary Cell Walls Alters Specific Methylated Cell Wall Fractions and Improves Biomass Digestibility. Frontiers in Bioengineering and Biotechnology, 2016, 4, 58.	2.0	8
468	Assembly and Multiplex Genome Integration of Metabolic Pathways in Yeast Using CasEMBLR. Methods in Molecular Biology, 2018, 1671, 185-201.	0.4	8

#	Article	IF	CITATIONS
469	A Highâ€Throughput Mass Spectrometric Enzyme Activity Assay Enabling the Discovery of Cytochrome P450 Biocatalysts. Angewandte Chemie, 2019, 131, 10220-10225.	1.6	8
470	Metabolite Profiling of Plastidial Deoxyxylulose-5-Phosphate Pathway Intermediates by Liquid Chromatography and Mass Spectrometry. Methods in Molecular Biology, 2014, 1153, 57-76.	0.4	8
471	Modular Synthetic Inverters from Zinc Finger Proteins and Small RNAs. PLoS ONE, 2016, 11, e0149483.	1.1	8
472	Lepidopteran mevalonate pathway optimization in Escherichia coli efficiently produces isoprenol analogs for next-generation biofuels. Metabolic Engineering, 2021, 68, 210-219.	3.6	8
473	Nitrogen Metabolism in Pseudomonas putida: Functional Analysis Using Random Barcode Transposon Sequencing. Applied and Environmental Microbiology, 2022, 88, e0243021.	1.4	8
474	Analysis of Biofilm Structure and Gene Expression Using Fluorescence Dual Labeling. Biotechnology Progress, 2001, 17, 1180-1182.	1.3	7
475	Effect of Glucose or Glycerol as the Sole Carbon Source on Gene Expression from the Salmonella prpBCDE Promoter in Escherichia coli. Biotechnology Progress, 2006, 22, 1547-1551.	1.3	7
476	Constraining Genome-Scale Models to Represent the Bow Tie Structure of Metabolism for 13C Metabolic Flux Analysis. Metabolites, 2018, 8, 3.	1.3	7
477	Structural insights into dehydratase substrate selection for the borrelidin and fluvirucin polyketide synthases. Journal of Industrial Microbiology and Biotechnology, 2019, 46, 1225-1235.	1.4	7
478	Control of polyphosphate metabolism in genetically engineered Escherichia coli. Enzyme and Microbial Technology, 1999, 24, 21-25.	1.6	6
479	The Effect of Monovalent Ions on Polyphosphate Binding to Escherichia coli Exopolyphosphatase. Biochemical and Biophysical Research Communications, 2000, 274, 236-241.	1.0	6
480	Effects of transcription induction homogeneity and transcript stability on expression of two genes in a constructed operon. Applied Microbiology and Biotechnology, 2001, 57, 689-696.	1.7	6
481	The Joint BioEnergy Institute (JBEI): Developing New Biofuels by Overcoming Biomass Recalcitrance. Bioenergy Research, 2010, 3, 105-107.	2.2	6
482	Engineering Bacteria to Catabolize the Carbonaceous Component of Sarin: Teaching <i>E. coli</i> to Eat Isopropanol. ACS Synthetic Biology, 2016, 5, 1485-1496.	1.9	6
483	Lower-Cost, Lower-Carbon Production of Circular Polydiketoenamine Plastics. ACS Sustainable Chemistry and Engineering, 2022, 10, 2740-2749.	3.2	6
484	Kinetics of BTEX Degradation by a Nitrate-reducing Mixed Culture. Annals of the New York Academy of Sciences, 1997, 829, 135-141.	1.8	5
485	Isolation and Characterization of Bacterial Cellulase Producers for Biomass Deconstruction: A Microbiology Laboratory Course. Journal of Microbiology and Biology Education, 2019, 20, .	0.5	5
486	Rationally engineered biotransformation of <i>p</i> â€nitrophenol. Biotechnology Progress, 2010, 26, 616-621.	1.3	4

#	Article	IF	CITATIONS
487	Flux-Enabled Exploration of the Role of Sip1 in Galactose Yeast Metabolism. Frontiers in Bioengineering and Biotechnology, 2017, 5, 31.	2.0	4
488	Functional Characterization of the Origin of Replication of pRN1 from Sulfolobus islandicus REN1H1. PLoS ONE, 2013, 8, e84664.	1.1	4
489	A FAIR-compliant parts catalogue for genome engineering and expression control in Saccharomyces cerevisiae. Synthetic and Systems Biotechnology, 2022, 7, 657-663.	1.8	4
490	Definitive Alkene Identification Needed for in Vitro Studies with Ole (Olefin Biosynthesis) Proteins. Journal of Biological Chemistry, 2011, 286, le11.	1.6	3
491	Structural and Biochemical Analysis of Protein–Protein Interactions Between the Acyl arrier Protein and Product Template Domain. Angewandte Chemie, 2016, 128, 13199-13203.	1.6	3
492	Synthetic Enzymology and the Fountain of Youth: Repurposing Biology for Longevity. ACS Omega, 2018, 3, 11050-11061.	1.6	3
493	Dietary Change Enables Robust Growth-Coupling of Heterologous Methyltransferase Activity in Yeast. ACS Synthetic Biology, 2020, 9, 3408-3415.	1.9	3
494	Complete Reductive Dechlorination of Trichloroethene by a Groundwater Microbial Consortiuma. Annals of the New York Academy of Sciences, 1997, 829, 97-102.	1.8	2
495	A bimodular PKS platform that expands the biological design space. Metabolic Engineering, 2020, 61, 389-396.	3.6	2
496	Q&A roundtable on US bioenergy research. Industrial Biotechnology, 2011, 7, 264-266.	0.5	1
497	Control of Stress Tolerance in Bacterial Host Organisms for Bioproduction of Fuels. Microbiology Monographs, 2012, , 209-238.	0.3	1
498	Synthetic Biology of Microbial Biofuel Production. , 2013, , 207-223.		1
499	A Conversation with Jay Keasling, PhD. Industrial Biotechnology, 2013, 9, 152-155.	0.5	1
500	Independence among synthetic genetic devices in the bacterium Escherichia coli extends to the time-domain. , 2014, , .		1
501	Enhanced fatty acid production in engineered chemolithoautotrophic bacteria using reduced sulfur compounds as energy sources. Metabolic Engineering Communications, 2016, 3, 211-215.	1.9	1
502	Biodesulfurization of dibenzothiophene in Escherichia coli is enhanced by expression of a Vibrio harveyi oxidoreductase gene. , 2000, 67, 72.		1
503	GENETIC AND BIOCHEMICAL MARKERS FOR ENHANCED BIOLOGICAL PHOSPHORUS REMOVAL. Proceedings of the Water Environment Federation, 2003, 2003, 529-549.	0.0	0
504	Errata to "A Microfabricated Electrochemical Oxygen Generator for High-Density Cell Culture Arrays― Journal of Microelectromechanical Systems, 2004, 13, 386-386.	1.7	0

#	Article	IF	CITATIONS
505	Practical Pathway Engineeringâ \in "Demonstration in Integrating Tools. , 2009, , .		0
506	Joint BioEnergy Institute. Industrial Biotechnology, 2011, 7, 259-260.	0.5	0
507	Correction: Global analysis of host response to induction of a latent bacteriophage. BMC Microbiology, 2013, 13, 183.	1.3	0
508	Metabolic Engineering of Escherichia coli for the Production of a Precursor to Artemisinin, an Antimalarial Drug. , 2014, , 364-379.		0
509	Correction for Thompson et al., "Fatty Acid and Alcohol Metabolism in Pseudomonas putida: Functional Analysis Using Random Barcode Transposon Sequencing― Applied and Environmental Microbiology, 2021, 87, .	1.4	0
510	Experimental and Theoretical Considerations of P1-plasmid Replication and Segregation During the E. coli Cell Cycle. Journal of Biological Sciences, 2005, 5, 222-229.	0.1	0
511	Design and Construction of a Double Inversion Recombination Switch for Heritable Sequential Genetic Memory. , 2011, , 175-196.		0
512	Feast: Choking on Acetyl-CoA, the Glyoxylate Shunt, and Acetyl-CoA-Driven Metabolism. , 2016, , 1-12.		0
513	Feast: Choking on Acetyl-CoA, the Glyoxylate Shunt, and Acetyl-CoA-Driven Metabolism. , 2018, , 463-474.		0
514	Engineering Natural Product Biosynthetic Pathways to Produce Commodity and Specialty Chemicals. , 2020, , 352-376.		0