
Joseph Bondy-Denomy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4746124/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genetic Manipulation of a CAST of Characters in a Microbial Community. CRISPR Journal, 2022, , .	1.4	1
2	Distinct Subcellular Localization of a Type I CRISPR Complex and the Cas3 Nuclease in Bacteria. Journal of Bacteriology, 2022, 204, e0010522.	1.0	7
3	A single bacterial enzyme i(NHI)bits phage DNA replication. Cell Host and Microbe, 2022, 30, 417-419.	5.1	1
4	Lack of Cas13a inhibition by anti-CRISPR proteins from Leptotrichia prophages. Molecular Cell, 2022, 82, 2161-2166.e3.	4.5	4
5	CRISPR-Cas12a targeting of ssDNA plays no detectable role in immunity. Nucleic Acids Research, 2022, 50, 6414-6422.	6.5	13
6	Mobile element warfare via CRISPR and anti-CRISPR in <i>Pseudomonas aeruginosa</i> . Nucleic Acids Research, 2021, 49, 2114-2125.	6.5	51
7	A phage-encoded anti-activator inhibits quorum sensing in Pseudomonas aeruginosa. Molecular Cell, 2021, 81, 571-583.e6.	4.5	80
8	Positioning Diverse Type IV Structures and Functions Within Class 1 CRISPR-Cas Systems. Frontiers in Microbiology, 2021, 12, 671522.	1.5	18
9	Anti-CRISPRs go viral: The infection biology of CRISPR-Cas inhibitors. Cell Host and Microbe, 2021, 29, 704-714.	5.1	43
10	CRISPR inactivation by integration. Nature Microbiology, 2021, 6, 1475-1476.	5.9	0
11	A bacteriophage nucleus-like compartment shields DNA from CRISPR nucleases. Nature, 2020, 577, 244-248.	13.7	146
12	A compact Cascade–Cas3 system for targeted genome engineering. Nature Methods, 2020, 17, 1183-1190.	9.0	104
13	Machine-learning approach expands the repertoire of anti-CRISPR protein families. Nature Communications, 2020, 11, 3784.	5.8	64
14	Intracellular Organization by Jumbo Bacteriophages. Journal of Bacteriology, 2020, 203, .	1.0	14
15	Discovery of multiple anti-CRISPRs highlights anti-defense gene clustering in mobile genetic elements. Nature Communications, 2020, 11, 5652.	5.8	88
16	Structures and Strategies of Anti-CRISPR-Mediated Immune Suppression. Annual Review of Microbiology, 2020, 74, 21-37.	2.9	62
17	Anti-CRISPR protein applications: natural brakes for CRISPR-Cas technologies. Nature Methods, 2020, 17, 471-479.	9.0	158
18	Broad-spectrum anti-CRISPR proteins facilitate horizontal gene transfer. Nature Microbiology, 2020, 5, 620-629.	5.9	79

Joseph Bondy-Denomy

#	Article	IF	CITATIONS
19	Bacterial alginate regulators and phage homologs repress CRISPR–Cas immunity. Nature Microbiology, 2020, 5, 679-687.	5.9	33
20	Listeria Phages Induce Cas9 Degradation to Protect Lysogenic Genomes. Cell Host and Microbe, 2020, 28, 31-40.e9.	5.1	54
21	Critical Anti-CRISPR Locus Repression by a Bi-functional Cas9 Inhibitor. Cell Host and Microbe, 2020, 28, 23-30.e5.	5.1	48
22	Cas13 Helps Bacteria Play Dead when the Enemy Strikes. Cell Host and Microbe, 2019, 26, 1-2.	5.1	7
23	Cryptic inoviruses revealed as pervasive in bacteria and archaea across Earth's biomes. Nature Microbiology, 2019, 4, 1895-1906.	5.9	206
24	Molecular mechanism of azithromycin resistance among typhoidal Salmonella strains in Bangladesh identified through passive pediatric surveillance. PLoS Neglected Tropical Diseases, 2019, 13, e0007868.	1.3	100
25	Anti-CRISPR-Associated Proteins Are Crucial Repressors of Anti-CRISPR Transcription. Cell, 2019, 178, 1452-1464.e13.	13.5	105
26	CRISPR-Cas System of a Prevalent Human Gut Bacterium Reveals Hyper-targeting against Phages in a Human Virome Catalog. Cell Host and Microbe, 2019, 26, 325-335.e5.	5.1	53
27	A Type IV-A CRISPR-Cas System in <i>Pseudomonas aeruginosa</i> Mediates RNA-Guided Plasmid Interference <i>In Vivo</i> . CRISPR Journal, 2019, 2, 434-440.	1.4	39
28	Temperature-Responsive Competitive Inhibition of CRISPR-Cas9. Molecular Cell, 2019, 73, 601-610.e5.	4.5	67
29	Anti-CRISPR-mediated control of gene editing and synthetic circuits in eukaryotic cells. Nature Communications, 2019, 10, 194.	5.8	118
30	Protein Inhibitors of CRISPR-Cas9. ACS Chemical Biology, 2018, 13, 417-423.	1.6	48
31	How bacteria control the CRISPR-Cas arsenal. Current Opinion in Microbiology, 2018, 42, 87-95.	2.3	21
32	Pseudomonas aeruginosa defends against phages through type IV pilus glycosylation. Nature Microbiology, 2018, 3, 47-52.	5.9	90
33	A Unified Resource for Tracking Anti-CRISPR Names. CRISPR Journal, 2018, 1, 304-305.	1.4	94
34	Discovery of widespread type I and type V CRISPR-Cas inhibitors. Science, 2018, 362, 240-242.	6.0	214
35	Phage Morons Play an Important Role in Pseudomonas aeruginosa Phenotypes. Journal of Bacteriology, 2018, 200, .	1.0	53
36	Bacteriophage Cooperation Suppresses CRISPR-Cas3 and Cas9 Immunity. Cell, 2018, 174, 917-925.e10.	13.5	139

Joseph Bondy-Denomy

#	Article	IF	CITATIONS
37	CRISPR control of virulence in Pseudomonas aeruginosa. Cell Research, 2017, 27, 163-164.	5.7	4
38	Cas1 and the Csy complex are opposing regulators of Cas2/3 nuclease activity. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E5113-E5121.	3.3	74
39	Structure Reveals Mechanisms of Viral Suppressors that Intercept a CRISPR RNA-Guided Surveillance Complex. Cell, 2017, 169, 47-57.e11.	13.5	191
40	Inhibition of CRISPR-Cas9 with Bacteriophage Proteins. Cell, 2017, 168, 150-158.e10.	13.5	409
41	The Discovery, Mechanisms, and Evolutionary Impact of Anti-CRISPRs. Annual Review of Virology, 2017, 4, 37-59.	3.0	173
42	Disabling Cas9 by an anti-CRISPR DNA mimic. Science Advances, 2017, 3, e1701620.	4.7	289
43	Quorum sensing controls the <i>Pseudomonas aeruginosa</i> CRISPR-Cas adaptive immune system. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 131-135.	3.3	227
44	The diversity-generating benefits of a prokaryotic adaptive immune system. Nature, 2016, 532, 385-388.	13.7	236
45	Active and adaptive <i>Legionella</i> CRISPRâ€Cas reveals a recurrent challenge to the pathogen. Cellular Microbiology, 2016, 18, 1319-1338.	1.1	31
46	The solution structure of an anti-CRISPR protein. Nature Communications, 2016, 7, 13134.	5.8	48
47	Prophages mediate defense against phage infection through diverse mechanisms. ISME Journal, 2016, 10, 2854-2866.	4.4	363
48	Foreign DNA acquisition by the I-FÂCRISPR–Cas system requires all components of the interference machinery. Nucleic Acids Research, 2015, 43, 10848-10860.	6.5	88
49	Parasite Exposure Drives Selective Evolution of Constitutive versus Inducible Defense. Current Biology, 2015, 25, 1043-1049.	1.8	244
50	Multiple mechanisms for CRISPR–Cas inhibition by anti-CRISPR proteins. Nature, 2015, 526, 136-139.	13.7	325
51	When a virus is not a parasite: the beneficial effects of prophages on bacterial fitness. Journal of Microbiology, 2014, 52, 235-242.	1.3	210
52	To acquire or resist: the complex biological effects of CRISPR–Cas systems. Trends in Microbiology, 2014, 22, 218-225.	3.5	90
53	A New Group of Phage Anti-CRISPR Genes Inhibits the Type I-E CRISPR-Cas System of Pseudomonas aeruginosa. MBio, 2014, 5, e00896.	1.8	224
54	CRISPR-Cas Immune System of a Prevalent Human Gut Bacterium Reveals Hypertargeting Against Gut Virome Phages. SSRN Electronic Journal, 0, , .	0.4	0