Ze-Wen Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4745875/publications.pdf Version: 2024-02-01

7E-MEN 7HANC

#	Article	IF	CITATIONS
1	Capturing the swelling of solid-electrolyte interphase in lithium metal batteries. Science, 2022, 375, 66-70.	12.6	183
2	Rational solvent molecule tuning for high-performance lithium metal battery electrolytes. Nature Energy, 2022, 7, 94-106.	39.5	336
3	Suspension electrolyte with modified Li+ solvation environment for lithium metal batteries. Nature Materials, 2022, 21, 445-454.	27.5	155
4	Graphene coating on silicon anodes enabled by thermal surface modification for high-energy lithium-ion batteries. MRS Bulletin, 2022, 47, 127-133.	3.5	13
5	A Solutionâ€Processable Highâ€Modulus Crystalline Artificial Solid Electrolyte Interphase for Practical Lithium Metal Batteries. Advanced Energy Materials, 2022, 12, .	19.5	10
6	Coldâ€Starting Allâ€Solidâ€State Batteries from Room Temperature by Thermally Modulated Current Collector in Subâ€Minute. Advanced Materials, 2022, 34, .	21.0	5
7	Cathode-Electrolyte Interphase in Lithium Batteries Revealed by Cryogenic Electron Microscopy. Matter, 2021, 4, 302-312.	10.0	127
8	Organic wastewater treatment by a single-atom catalyst and electrolytically produced H2O2. Nature Sustainability, 2021, 4, 233-241.	23.7	350
9	Efficient Lithium Metal Cycling over a Wide Range of Pressures from an Anion-Derived Solid-Electrolyte Interphase Framework. ACS Energy Letters, 2021, 6, 816-825.	17.4	46
10	Dualâ€Solvent Liâ€Ion Solvation Enables Highâ€Performance Liâ€Metal Batteries. Advanced Materials, 2021, 33, e2008619.	21.0	123
11	Cryogenic Electron Microscopy for Energy Materials. Accounts of Chemical Research, 2021, 54, 3505-3517.	15.6	19
12	Resolve cathode electrolyte interphase in lithium batteries with cryo-EM. Microscopy and Microanalysis, 2021, 27, 2188-2190.	0.4	0
13	Dynamic spatial progression of isolated lithium during battery operations. Nature, 2021, 600, 659-663.	27.8	111
14	A Water Stable, Nearâ€Zeroâ€Strain O3â€Layered Titaniumâ€Based Anode for Long Cycle Sodiumâ€Ion Battery. Advanced Functional Materials, 2020, 30, 1907023.	14.9	36
15	Designing a Nanoscale Three-phase Electrochemical Pathway to Promote Pt-catalyzed Formaldehyde Oxidation. Nano Letters, 2020, 20, 8719-8724.	9.1	15
16	Underpotential lithium plating on graphite anodes caused by temperature heterogeneity. Proceedings of the United States of America, 2020, 117, 29453-29461.	7.1	94
17	Electrode Design with Integration of High Tortuosity and Sulfur-Philicity for High-Performance Lithium-Sulfur Battery. Matter, 2020, 2, 1605-1620.	10.0	83
18	Incorporating the Nanoscale Encapsulation Concept from Liquid Electrolytes into Solid-State Lithium–Sulfur Batteries. Nano Letters, 2020, 20, 5496-5503.	9.1	30

ZE-WEN ZHANG

#	Article	IF	CITATIONS
19	Improving Lithium Metal Composite Anodes with Seeding and Pillaring Effects of Silicon Nanoparticles. ACS Nano, 2020, 14, 4601-4608.	14.6	61
20	Evolution of the Solid–Electrolyte Interphase on Carbonaceous Anodes Visualized by Atomic-Resolution Cryogenic Electron Microscopy. Nano Letters, 2019, 19, 5140-5148.	9.1	132
21	Self-Selective Catalyst Synthesis for CO2 Reduction. Joule, 2019, 3, 1927-1936.	24.0	63
22	Dynamic Structure and Chemistry of the Silicon Solid-Electrolyte Interphase Visualized by Cryogenic Electron Microscopy. Matter, 2019, 1, 1232-1245.	10.0	107
23	Unravelling Degradation Mechanisms and Atomic Structure of Organic-Inorganic Halide Perovskites by Cryo-EM. Joule, 2019, 3, 2854-2866.	24.0	99
24	From Supramolecular Species to Selfâ€īemplated Porous Carbon and Metalâ€Doped Carbon for Oxygen Reduction Reaction Catalysts. Angewandte Chemie, 2019, 131, 5017-5021.	2.0	7
25	From Supramolecular Species to Selfâ€Templated Porous Carbon and Metalâ€Doped Carbon for Oxygen Reduction Reaction Catalysts. Angewandte Chemie - International Edition, 2019, 58, 4963-4967.	13.8	59
26	Wrinkled Graphene Cages as Hosts for High-Capacity Li Metal Anodes Shown by Cryogenic Electron Microscopy. Nano Letters, 2019, 19, 1326-1335.	9.1	193
27	An Interconnected Channel‣ike Framework as Host for Lithium Metal Composite Anodes. Advanced Energy Materials, 2019, 9, 1802720.	19.5	83
28	Breathing-Mimicking Electrocatalysis for Oxygen Evolution and Reduction. Joule, 2019, 3, 557-569.	24.0	132
29	Innentitelbild: Activating Inert Metallic Compounds for Highâ€Rate Lithium–Sulfur Batteries Through In Situ Etching of Extrinsic Metal (Angew. Chem. 12/2019). Angewandte Chemie, 2019, 131, 3692-3692.	2.0	1
30	Activating Inert Metallic Compounds for Highâ€Rate Lithium–Sulfur Batteries Through In Situ Etching of Extrinsic Metal. Angewandte Chemie - International Edition, 2019, 58, 3779-3783.	13.8	296
31	Activating Inert Metallic Compounds for Highâ€Rate Lithium–Sulfur Batteries Through In Situ Etching of Extrinsic Metal. Angewandte Chemie, 2019, 131, 3819-3823.	2.0	41
32	Lithiumâ€Sulfur Batteries: Heterogeneous/Homogeneous Mediators for Highâ€Energyâ€Density Lithium–Sulfur Batteries: Progress and Prospects (Adv. Funct. Mater. 38/2018). Advanced Functional Materials, 2018, 28, 1870269.	14.9	57
33	Heterogeneous/Homogeneous Mediators for Highâ€Energyâ€Density Lithium–Sulfur Batteries: Progress and Prospects. Advanced Functional Materials, 2018, 28, 1707536.	14.9	251
34	Beaver-dam-like membrane: A robust and sulphifilic MgBO2(OH)/CNT/PP nest separator in Li-S batteries. Energy Storage Materials, 2017, 8, 153-160.	18.0	86
35	A Toolbox for Lithium–Sulfur Battery Research: Methods and Protocols. Small Methods, 2017, 1, 1700134.	8.6	230
36	Frontispiz: Enhanced Electrochemical Kinetics on Conductive Polar Mediators for Lithium–Sulfur Batteries. Angewandte Chemie, 2016, 128, .	2.0	1

ZE-WEN ZHANG

#	Article	IF	CITATIONS
37	Frontispiece: Enhanced Electrochemical Kinetics on Conductive Polar Mediators for Lithium–Sulfur Batteries. Angewandte Chemie - International Edition, 2016, 55, .	13.8	2
38	Enhanced Electrochemical Kinetics on Conductive Polar Mediators for Lithium–Sulfur Batteries. Angewandte Chemie - International Edition, 2016, 55, 12990-12995.	13.8	560
39	Enhanced Electrochemical Kinetics on Conductive Polar Mediators for Lithium–Sulfur Batteries. Angewandte Chemie, 2016, 128, 13184-13189.	2.0	115
40	A Cooperative Interface for Highly Efficient Lithium–Sulfur Batteries. Advanced Materials, 2016, 28, 9551-9558.	21.0	514
41	Lithium‣ulfur Batteries: A Cooperative Interface for Highly Efficient Lithium–Sulfur Batteries (Adv.) Tj ETQq1	1 0,7843 21.0	14 ₃ rgBT /Ove