Kiran Yanamandra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4745442/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Heparan sulfate proteoglycans mediate internalization and propagation of specific proteopathic seeds. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E3138-47.	7.1	683
2	Anti-Tau Antibodies that Block Tau Aggregate Seeding InÂVitro Markedly Decrease Pathology and Improve Cognition InÂVivo. Neuron, 2013, 80, 402-414.	8.1	483
3	Lysozyme Amyloid Oligomers and Fibrils Induce Cellular Death via Different Apoptotic/Necrotic Pathways. Journal of Molecular Biology, 2007, 365, 1337-1349.	4.2	188
4	α-Synuclein Reactive Antibodies as Diagnostic Biomarkers in Blood Sera of Parkinson's Disease Patients. PLoS ONE, 2011, 6, e18513.	2.5	146
5	Antiâ€ŧau antibody reduces insoluble tau and decreases brain atrophy. Annals of Clinical and Translational Neurology, 2015, 2, 278-288.	3.7	145
6	Immunoprotection against toxic biomarkers is retained during Parkinson's disease progression. Journal of Neuroimmunology, 2011, 233, 221-227.	2.3	95
7	Amyloid Formation by the Pro-Inflammatory S100A8/A9 Proteins in the Ageing Prostate. PLoS ONE, 2009, 4, e5562.	2.5	95
8	Anti-tau antibody administration increases plasma tau in transgenic mice and patients with tauopathy. Science Translational Medicine, 2017, 9, .	12.4	78
9	S100A6 Amyloid Fibril Formation Is Calcium-modulated and Enhances Superoxide Dismutase-1 (SOD1) Aggregation. Journal of Biological Chemistry, 2012, 287, 42233-42242.	3.4	36
10	Correlation between Protective Immunity to α-Synuclein Aggregates, Oxidative Stress and Inflammation. NeuroImmunoModulation, 2012, 19, 334-342.	1.8	35
11	Lability Landscape and Protease Resistance of Human Insulin Amyloid: A New Insight into Its Molecular Properties. Journal of Molecular Biology, 2010, 396, 60-74.	4.2	19
12	Nasal inoculation with α-synuclein aggregates evokes rigidity, locomotor deficits and immunity to such misfolded species as well as dopamine. Behavioural Brain Research, 2013, 243, 205-212.	2.2	13
13	Structural Heterogeneity and Bioimaging of S100 Amyloid Assemblies. , 2014, , 197-212.		4
14	Anti-Tau Antibodies that Block Tau Aggregate Seeding InÂVitro Markedly Decrease Pathology and Improve Cognition InÂVivo. Neuron, 2013, 80, 1572.	8.1	1
15	Active and Passive Immunotherapy Against Tau: Effects and Potential Mechanisms. Methods in Pharmacology and Toxicology, 2016, , 121-138.	0.2	0