Ines Ibañez-Tallon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4745382/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The habenular G-protein–coupled receptor 151 regulates synaptic plasticity and nicotine intake. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 5502-5509.	7.1	31
2	β4-Nicotinic Receptors Are Critically Involved in Reward-Related Behaviors and Self-Regulation of Nicotine Reinforcement. Journal of Neuroscience, 2020, 40, 3465-3477.	3.6	14
3	Habenular Synapses and Nicotine. , 2019, , 71-78.		1
4	Habenular TCF7L2 links nicotine addiction to diabetes. Nature, 2019, 574, 372-377.	27.8	81
5	Cell-Type-Specific Contributions of Medial Prefrontal Neurons to Flexible Behaviors. Journal of Neuroscience, 2018, 38, 4490-4504.	3.6	66
6	Retrograde inhibition by a specific subset of interpeduncular α5 nicotinic neurons regulates nicotine preference. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 13012-13017.	7.1	41
7	A Cortical Circuit for Sexually Dimorphic Oxytocin-Dependent Anxiety Behaviors. Cell, 2016, 167, 60-72.e11.	28.9	180
8	Excitatory transmission at thalamo-striatal synapses mediates susceptibility to social stress. Nature Neuroscience, 2015, 18, 962-964.	14.8	86
9	Suppression of Peripheral Pain by Blockade of Voltageâ€Gated Calcium 2.2 Channels in Nociceptors Induces RANKL and Impairs Recovery From Inflammatory Arthritis in a Mouse Model. Arthritis and Rheumatology, 2015, 67, 1657-1667.	5.6	11
10	Conserved expression of the GPR151 receptor in habenular axonal projections of vertebrates. Journal of Comparative Neurology, 2015, 523, Spc1.	1.6	0
11	The habenulo-interpeduncular pathway in nicotine aversion and withdrawal. Neuropharmacology, 2015, 96, 213-222.	4.1	111
12	Conserved expression of the GPR151 receptor in habenular axonal projections of vertebrates. Journal of Comparative Neurology, 2015, 523, 359-380.	1.6	49
13	An essential role of acetylcholine-glutamate synergy at habenular synapses in nicotine dependence. ELife, 2015, 4, e11396.	6.0	65
14	Habenular expression of rare missense variants of the β4 nicotinic receptor subunit alters nicotine consumption. Frontiers in Human Neuroscience, 2014, 8, 12.	2.0	35
15	Reexposure to nicotine during withdrawal increases the pacemaking activity of cholinergic habenular neurons. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 17077-17082.	7.1	89
16	Aversion to Nicotine Is Regulated by the Balanced Activity of β4 and α5 Nicotinic Receptor Subunits in the Medial Habenula. Neuron, 2011, 70, 522-535.	8.1	256
17	Silencing neurotransmission with membrane-tethered toxins. Nature Methods, 2010, 7, 229-236.	19.0	50
18	The Prototoxin lynx1 Acts on Nicotinic Acetylcholine Receptors to Balance Neuronal Activity and Survival In Vivo. Neuron, 2006, 51, 587-600.	8.1	151

Ines Ibañez-Tallon

#	Article	IF	CITATIONS
19	Dysfunction of axonemal dynein heavy chain Mdnah5 inhibits ependymal flow and reveals a novel mechanism for hydrocephalus formation. Human Molecular Genetics, 2004, 13, 2133-2141.	2.9	326
20	Tethering Naturally Occurring Peptide Toxins for Cell-Autonomous Modulation of Ion Channels and Receptors In Vivo. Neuron, 2004, 43, 305-311.	8.1	79
21	To beat or not to beat: roles of cilia in development and disease. Human Molecular Genetics, 2003, 12, 27R-35.	2.9	285
22	Loss of function of axonemal dynein Mdnah5 causes primary ciliary dyskinesia and hydrocephalus. Human Molecular Genetics, 2002, 11, 715-721.	2.9	209
23	Novel Modulation of Neuronal Nicotinic Acetylcholine Receptors by Association with the Endogenous Prototoxin lynx1. Neuron, 2002, 33, 893-903.	8.1	197