
Chiara Dalla Man

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4745170/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Meal Simulation Model of the Glucose-Insulin System. IEEE Transactions on Biomedical Engineering, 2007, 54, 1740-1749.	4.2	745
2	<i>In Silico</i> Preclinical Trials: A Proof of Concept in Closed-Loop Control of Type 1 Diabetes. Journal of Diabetes Science and Technology, 2009, 3, 44-55.	2.2	621
3	The UVA/PADOVA Type 1 Diabetes Simulator. Journal of Diabetes Science and Technology, 2014, 8, 26-34.	2.2	587
4	DHEA in Elderly Women and DHEA or Testosterone in Elderly Men. New England Journal of Medicine, 2006, 355, 1647-1659.	27.0	527
5	Diabetes: Models, Signals, and Control. IEEE Reviews in Biomedical Engineering, 2009, 2, 54-96.	18.0	431
6	Mechanisms of the Age-Associated Deterioration in Glucose Tolerance. Diabetes, 2003, 52, 1738-1748.	0.6	373
7	Increased prevalence of insulin resistance and nonalcoholic fatty liver disease in Asian-Indian men. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 18273-18277.	7.1	354
8	Fully Integrated Artificial Pancreas in Type 1 Diabetes. Diabetes, 2012, 61, 2230-2237.	0.6	343
9	Assessment of β-cell function in humans, simultaneously with insulin sensitivity and hepatic extraction, from intravenous and oral glucose tests. American Journal of Physiology - Endocrinology and Metabolism, 2007, 293, E1-E15.	3.5	276
10	Effects of Age and Sex on Postprandial Glucose Metabolism: Differences in Glucose Turnover, Insulin Secretion, Insulin Action, and Hepatic Insulin Extraction. Diabetes, 2006, 55, 2001-2014.	0.6	271
11	Downregulation of the Longevity-Associated Protein Sirtuin 1 in Insulin Resistance and Metabolic Syndrome: Potential Biochemical Mechanisms. Diabetes, 2010, 59, 1006-1015.	0.6	268
12	Alterations in Postprandial Hepatic Glycogen Metabolism in Type 2 Diabetes. Diabetes, 2004, 53, 3048-3056.	0.6	267
13	Model Predictive Control of Type 1 Diabetes: An <i>in Silico</i> Trial. Journal of Diabetes Science and Technology, 2007, 1, 804-812.	2.2	265
14	A System Model of Oral Glucose Absorption: Validation on Gold Standard Data. IEEE Transactions on Biomedical Engineering, 2006, 53, 2472-2478.	4.2	228
15	GIM, Simulation Software of Meal Glucose—Insulin Model. Journal of Diabetes Science and Technology, 2007, 1, 323-330.	2.2	206
16	Diurnal Pattern to Insulin Secretion and Insulin Action in Healthy Individuals. Diabetes, 2012, 61, 2691-2700.	0.6	195
17	The oral glucose minimal model: Estimation of insulin sensitivity from a meal test. IEEE Transactions on Biomedical Engineering, 2002, 49, 419-429.	4.2	188
18	Multinational Study of Subcutaneous Model-Predictive Closed-Loop Control in Type 1 Diabetes Mellitus: Summary of the Results. Journal of Diabetes Science and Technology, 2010, 4, 1374-1381.	2.2	188

#	Article	IF	CITATIONS
19	Evaluating the Efficacy of Closed-Loop Glucose Regulation via Control-Variability Grid Analysis. Journal of Diabetes Science and Technology, 2008, 2, 630-635.	2.2	185
20	Pathogenesis of Pre-Diabetes: Mechanisms of Fasting and Postprandial Hyperglycemia in People With Impaired Fasting Glucose and/or Impaired Glucose Tolerance. Diabetes, 2006, 55, 3536-3549.	0.6	182
21	The Oral Minimal Model Method. Diabetes, 2014, 63, 1203-1213.	0.6	169
22	The UVA/Padova Type 1 Diabetes Simulator Goes From Single Meal to Single Day. Journal of Diabetes Science and Technology, 2018, 12, 273-281.	2.2	169
23	Model predictive control of glucose concentration in type I diabetic patients: An in silico trial. Biomedical Signal Processing and Control, 2009, 4, 338-346.	5.7	162
24	Minimal model estimation of glucose absorption and insulin sensitivity from oral test: validation with a tracer method. American Journal of Physiology - Endocrinology and Metabolism, 2004, 287, E637-E643.	3.5	160
25	Two-Hour Seven-Sample Oral Glucose Tolerance Test and Meal Protocol: Minimal Model Assessment of Â-Cell Responsivity and Insulin Sensitivity in Nondiabetic Individuals. Diabetes, 2005, 54, 3265-3273.	0.6	158
26	Modular Closed-Loop Control of Diabetes. IEEE Transactions on Biomedical Engineering, 2012, 59, 2986-2999.	4.2	150
27	Pulsatile Portal Vein Insulin Delivery Enhances Hepatic Insulin Action and Signaling. Diabetes, 2012, 61, 2269-2279.	0.6	142
28	Effect of adding sitagliptin, a dipeptidyl peptidase-4 inhibitor, to metformin on 24-h glycaemic control and ?-cell function in patients with type 2 diabetes. Diabetes, Obesity and Metabolism, 2007, 9, 186-193.	4.4	136
29	Closed-Loop Artificial Pancreas Using Subcutaneous Glucose Sensing and Insulin Delivery and a Model Predictive Control Algorithm: Preliminary Studies in Padova and Montpellier. Journal of Diabetes Science and Technology, 2009, 3, 1014-1021.	2.2	127
30	Contribution of Endogenous Glucagon-Like Peptide 1 to Glucose Metabolism After Roux-en-Y Gastric Bypass. Diabetes, 2014, 63, 483-493.	0.6	123
31	Primary Defects in β-Cell Function Further Exacerbated by Worsening of Insulin Resistance Mark the Development of Impaired Glucose Tolerance in Obese Adolescents. Diabetes Care, 2009, 32, 456-461.	8.6	115
32	Measurements of Islet Function and Glucose Metabolism with the Dipeptidyl Peptidase 4 Inhibitor Vildagliptin in Patients with Type 2 Diabetes. Journal of Clinical Endocrinology and Metabolism, 2008, 93, 459-464.	3.6	113
33	Effects of Type 2 Diabetes on Insulin Secretion, Insulin Action, Glucose Effectiveness, and Postprandial Glucose Metabolism. Diabetes Care, 2009, 32, 866-872.	8.6	109
34	Common Genetic Variation in <i>GLP1R</i> and Insulin Secretion in Response to Exogenous GLP-1 in Nondiabetic Subjects. Diabetes Care, 2010, 33, 2074-2076.	8.6	106
35	MPC based Artificial Pancreas: Strategies for individualization and meal compensation. Annual Reviews in Control, 2012, 36, 118-128.	7.9	101
36	Insulin sensitivity by oral glucose minimal models: validation against clamp. American Journal of Physiology - Endocrinology and Metabolism, 2005, 289, E954-E959.	3.5	101

#	Article	IF	CITATIONS
37	Physical Activity into the Meal Glucose—Insulin Model of Type 1 Diabetes: <i>In Silico</i> Studies. Journal of Diabetes Science and Technology, 2009, 3, 56-67.	2.2	95
38	Run-to-Run Tuning of Model Predictive Control for Type 1 Diabetes Subjects: In Silico Trial. Journal of Diabetes Science and Technology, 2009, 3, 1091-1098.	2.2	95
39	Day and Night Closed-Loop Control in Adults With Type 1 Diabetes. Diabetes Care, 2013, 36, 3882-3887.	8.6	95
40	Diurnal Pattern of Insulin Action in Type 1 Diabetes. Diabetes, 2013, 62, 2223-2229.	0.6	94
41	Defects in Mitochondrial Efficiency and H2O2 Emissions in Obese Women Are Restored to a Lean Phenotype With Aerobic Exercise Training. Diabetes, 2015, 64, 2104-2115.	0.6	89
42	Effect of 2 Years of Testosterone Replacement on Insulin Secretion, Insulin Action, Glucose Effectiveness, Hepatic Insulin Clearance, and Postprandial Glucose Turnover in Elderly Men. Diabetes Care, 2007, 30, 1972-1978.	8.6	85
43	Differential effects of the circadian system and circadian misalignment on insulin sensitivity and insulin secretion in humans. Diabetes, Obesity and Metabolism, 2018, 20, 2481-2485.	4.4	85
44	Circadian Variability of Insulin Sensitivity: Physiological Input for In Silico Artificial Pancreas. Diabetes Technology and Therapeutics, 2015, 17, 1-7.	4.4	84
45	Ethnic Differences in Insulin Sensitivity, β-Cell Function, and Hepatic Extraction Between Japanese and Caucasians: A Minimal Model Analysis. Journal of Clinical Endocrinology and Metabolism, 2014, 99, 4273-4280.	3.6	83
46	The Effect of a Bile Acid Sequestrant on Glucose Metabolism in Subjects With Type 2 Diabetes. Diabetes, 2013, 62, 1094-1101.	0.6	78
47	Glucose metabolism during rotational shift-work in healthcare workers. Diabetologia, 2017, 60, 1483-1490.	6.3	76
48	The Effect of Walking on Postprandial Glycemic Excursion in Patients With Type 1 Diabetes and Healthy People. Diabetes Care, 2012, 35, 2493-2499.	8.6	75
49	Effect of sitagliptin, a dipeptidyl peptidaseâ€4 inhibitor, on betaâ€cell function in patients with type 2 diabetes: a modelâ€based approach. Diabetes, Obesity and Metabolism, 2008, 10, 1212-1220.	4.4	74
50	The University of Virginia/Padova Type 1 Diabetes Simulator Matches the Glucose Traces of a Clinical Trial. Diabetes Technology and Therapeutics, 2014, 16, 428-434.	4.4	74
51	Interstitial Fluid Glucose Is Not Just a Shifted-in-Time but a Distorted Mirror of Blood Glucose: Insight from an In Silico Study. Diabetes Technology and Therapeutics, 2016, 18, 505-511.	4.4	71
52	Twelve-Week 24/7 Ambulatory Artificial Pancreas With Weekly Adaptation of Insulin Delivery Settings: Effect on Hemoglobin A1c and Hypoglycemia. Diabetes Care, 2017, 40, 1719-1726.	8.6	68
53	Adjustment of Open-Loop Settings to Improve Closed-Loop Results in Type 1 Diabetes: A Multicenter Randomized Trial. Journal of Clinical Endocrinology and Metabolism, 2015, 100, 3878-3886.	3.6	67
54	One-Day Bayesian Cloning of Type 1 Diabetes Subjects: Toward a Single-Day UVA/Padova Type 1 Diabetes Simulator. IEEE Transactions on Biomedical Engineering, 2016, 63, 2416-2424.	4.2	63

#	Article	IF	CITATIONS
55	Pioglitazone Decreases Fasting and Postprandial Endogenous Glucose Production in Proportion to Decrease in Hepatic Triglyceride Content. Diabetes, 2008, 57, 2288-2295.	0.6	62
56	Two Years of Treatment With Dehydroepiandrosterone Does Not Improve Insulin Secretion, Insulin Action, or Postprandial Glucose Turnover in Elderly Men or Women. Diabetes, 2007, 56, 753-766.	0.6	60
57	Exercise effects on postprandial glucose metabolism in type 1 diabetes: a triple-tracer approach. American Journal of Physiology - Endocrinology and Metabolism, 2015, 308, E1106-E1115.	3.5	59
58	Dipeptidyl Peptidase-4 Inhibition by Vildagliptin and the Effect on Insulin Secretion and Action in Response to Meal Ingestion in Type 2 Diabetes. Diabetes Care, 2009, 32, 14-18.	8.6	58
59	Adipose tissue macrophage populations and inflammation are associated with systemic inflammation and insulin resistance in obesity. American Journal of Physiology - Endocrinology and Metabolism, 2021, 321, E105-E121.	3.5	55
60	Measurement of selective effect of insulin on glucose disposal from labeled glucose oral test minimal model. American Journal of Physiology - Endocrinology and Metabolism, 2005, 289, E909-E914.	3.5	54
61	The effect of DPPâ€4 inhibition with sitagliptin on incretin secretion and on fasting and postprandial glucose turnover in subjects with impaired fasting glucose. Clinical Endocrinology, 2010, 73, 189-196.	2.4	54
62	The rs7903146 Variant in the <i>TCF7L2</i> Gene Increases the Risk of Prediabetes/Type 2 Diabetes in Obese Adolescents by Impairing β-Cell Function and Hepatic Insulin Sensitivity. Diabetes Care, 2017, 40, 1082-1089.	8.6	50
63	Standardized Mixed-Meal Tolerance and Arginine Stimulation Tests Provide Reproducible and Complementary Measures of β-Cell Function: Results From the Foundation for the National Institutes of Health Biomarkers Consortium Investigative Series. Diabetes Care, 2016, 39, 1602-1613.	8.6	47
64	Assessment of postprandial glucose metabolism: conventional dual- vs. triple-tracer method. American Journal of Physiology - Endocrinology and Metabolism, 2006, 291, E800-E806.	3.5	46
65	Multicenter Closed-Loop Insulin Delivery Study Points to Challenges for Keeping Blood Glucose in a Safe Range by a Control Algorithm in Adults and Adolescents with Type 1 Diabetes from Various Sites. Diabetes Technology and Therapeutics, 2014, 16, 613-622.	4.4	43
66	Quantitative Estimation of Insulin Sensitivity in Type 1 Diabetic Subjects Wearing a Sensor-Augmented Insulin Pump. Diabetes Care, 2014, 37, 1216-1223.	8.6	43
67	<i>TCF7L2</i> Genotype and <i>α</i> -Cell Function in Humans Without Diabetes. Diabetes, 2016, 65, 371-380.	0.6	43
68	Three hours of intermittent hypoxia increases circulating glucose levels in healthy adults. Physiological Reports, 2017, 5, e13106.	1.7	42
69	Six and 12 Weeks of Caloric Restriction Increases \hat{I}^2 Cell Function and Lowers Fasting and Postprandial Glucose Concentrations in People with Type 2 Diabetes. Journal of Nutrition, 2015, 145, 2046-2051.	2.9	40
70	Effects of Nonglucose Nutrients on Insulin Secretion and Action in People With Pre-Diabetes. Diabetes, 2007, 56, 1113-1119.	0.6	39
71	Advancing Our Understanding of the Glucose System via Modeling: A Perspective. IEEE Transactions on Biomedical Engineering, 2014, 61, 1577-1592.	4.2	38
72	Multicenter Closed-Loop/Hybrid Meal Bolus Insulin Delivery with Type 1 Diabetes. Diabetes Technology and Therapeutics, 2014, 16, 623-632.	4.4	38

5

#	Article	IF	CITATIONS
73	Modeling Subcutaneous Absorption of Fast-Acting Insulin in Type 1 Diabetes. IEEE Transactions on Biomedical Engineering, 2018, 65, 2079-2086.	4.2	38
74	A concerted decline in insulin secretion and action occurs across the spectrum of fasting and postchallenge glucose concentrations. Clinical Endocrinology, 2012, 76, 212-219.	2.4	37
75	Effects of the BET-inhibitor, RVX-208 on the HDL lipidome and glucose metabolism in individuals with prediabetes: A randomized controlled trial. Metabolism: Clinical and Experimental, 2016, 65, 904-914.	3.4	37
76	A model of GLP-1 action on insulin secretion in nondiabetic subjects. American Journal of Physiology - Endocrinology and Metabolism, 2010, 298, E1115-E1121.	3.5	36
77	Diabetes-Associated Common Genetic Variation and Its Association With GLP-1 Concentrations and Response to Exogenous GLP-1. Diabetes, 2012, 61, 1082-1089.	0.6	36
78	Postprandial glucose fluxes and insulin sensitivity during exercise: A study in healthy individuals. American Journal of Physiology - Endocrinology and Metabolism, 2013, 305, E557-E566.	3.5	36
79	Cholecalciferol Supplementation Does Not Influence β-Cell Function and Insulin Action in Obese Adolescents: A Prospective Double-Blind Randomized Trial,. Journal of Nutrition, 2015, 145, 284-290.	2.9	36
80	Impaired fasting glucose with or without impaired glucose tolerance: progressive or parallel states of prediabetes?. American Journal of Physiology - Endocrinology and Metabolism, 2008, 295, E428-E435.	3.5	34
81	Mixed Meal Simulation Model of Glucose-Insulin System. , 2006, 2006, 307-10.		32
82	Impaired insulin signaling in unaffected siblings and patients with first-episode psychosis. Molecular Psychiatry, 2019, 24, 1513-1522.	7.9	32
83	Ageâ€Related Changes in Insulin Sensitivity and βâ€Cell Function Among Europeanâ€American and Africanâ€American Women. Obesity, 2011, 19, 528-535.	3.0	31
84	Modeling Plasma-to-Interstitium Glucose Kinetics from Multitracer Plasma and Microdialysis Data. Diabetes Technology and Therapeutics, 2015, 17, 825-831.	4.4	31
85	Mechanism of Insulin Resistance in Normal Pregnancy. Hormone and Metabolic Research, 2013, 45, 567-571.	1.5	30
86	Co-occurrence of Risk Alleles in or Near Genes Modulating Insulin Secretion Predisposes Obese Youth to Prediabetes. Diabetes Care, 2014, 37, 475-482.	8.6	30
87	Prospective evaluation of insulin and incretin dynamics in obese adults with and without diabetes for 2Âyears after Roux-en-Y gastric bypass. Diabetologia, 2018, 61, 1142-1154.	6.3	30
88	Defects in GLP-1 Response to an Oral Challenge Do Not Play a Significant Role in the Pathogenesis of Prediabetes. Journal of Clinical Endocrinology and Metabolism, 2012, 97, 589-598.	3.6	29
89	<i>In Silico</i> Optimization of Basal Insulin Infusion Rate during Exercise: Implication for Artificial Pancreas. Journal of Diabetes Science and Technology, 2013, 7, 1461-1469.	2.2	29
90	Improving Efficacy of Inhaled Technosphere Insulin (Afrezza) by Postmeal Dosing: In-silico Clinical Trial with the University of Virginia/Padova Type 1 Diabetes Simulator. Diabetes Technology and Therapeutics, 2016, 18, 574-585.	4.4	29

#	Article	IF	CITATIONS
91	A Dynamic Risk Measure from Continuous Glucose Monitoring Data. Diabetes Technology and Therapeutics, 2011, 13, 843-852.	4.4	28
92	Dual glucagonâ€like peptideâ€1 receptor/glucagon receptor agonist SAR425899 improves betaâ€cell function in type 2 diabetes. Diabetes, Obesity and Metabolism, 2020, 22, 640-647.	4.4	27
93	Assessment of Blood Glucose Predictors: The Prediction-Error Grid Analysis. Diabetes Technology and Therapeutics, 2011, 13, 787-796.	4.4	26
94	Effects of delayed gastric emptying on postprandial glucose kinetics, insulin sensitivity, and β-cell function. American Journal of Physiology - Endocrinology and Metabolism, 2014, 307, E494-E502.	3.5	26
95	Impaired Insulin Action Is Associated With Increased Glucagon Concentrations in Nondiabetic Humans. Journal of Clinical Endocrinology and Metabolism, 2018, 103, 314-319.	3.6	26
96	Improved postprandial glucose metabolism in type 2 diabetes by the dual glucagonâ€like peptideâ€1/glucagon receptor agonist SAR425899 in comparison with liraglutide. Diabetes, Obesity and Metabolism, 2021, 23, 1795-1805.	4.4	26
97	Modeling and Control of Diabetes: Towards the Artificial Pancreas. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2011, 44, 7092-7101.	0.4	24
98	Direct Effects of Exendin-(9,39) and GLP-1-(9,36)amide on Insulin Action, Î ² -Cell Function, and Glucose Metabolism in Nondiabetic Subjects. Diabetes, 2013, 62, 2752-2756.	0.6	24
99	Modeling hepatic insulin sensitivity during a meal: validation against the euglycemic hyperinsulinemic clamp. American Journal of Physiology - Endocrinology and Metabolism, 2013, 304, E819-E825.	3.5	24
100	A common variant in the <i>MTNR1b</i> gene is associated with increased risk of impaired fasting glucose (IFG) in youth with obesity. Obesity, 2015, 23, 1022-9.	3.0	24
101	Effect of Pramlintide on Postprandial Glucose Fluxes in Type 1 Diabetes. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 1954-1962.	3.6	24
102	Physical Activity Measured by Physical Activity Monitoring System Correlates with Glucose Trends Reconstructed from Continuous Glucose Monitoring. Diabetes Technology and Therapeutics, 2013, 15, 836-844.	4.4	23
103	Postprandial improvement in insulin sensitivity after a single exercise session in adolescents with low aerobic fitness and physical activity. Pediatric Diabetes, 2013, 14, 129-137.	2.9	22
104	Use of labeled oral minimal model to measure hepatic insulin sensitivity. American Journal of Physiology - Endocrinology and Metabolism, 2008, 295, E1152-E1159.	3.5	19
105	Incretin action maintains insulin secretion, but not hepatic insulin action, in people with impaired fasting glucose. Diabetes Research and Clinical Practice, 2010, 90, 87-94.	2.8	19
106	In Silico Design of Optimal Ratio for Co-Administration of Pramlintide and Insulin in Type 1 Diabetes. Diabetes Technology and Therapeutics, 2013, 15, 802-809.	4.4	19
107	Association Between Thyrotropin Levels and Insulin Sensitivity in Euthyroid Obese Adolescents. Thyroid, 2015, 25, 478-484.	4.5	19
108	A Model for the Estimation of Hepatic Insulin Extraction After a Meal. IEEE Transactions on Biomedical Engineering, 2016, 63, 1925-1932.	4.2	19

#	Article	IF	CITATIONS
109	Inducing remission of Type 2 diabetes in the Caribbean: findings from a mixed methods feasibility study of a lowâ€calorie liquid dietâ€based intervention in Barbados. Diabetic Medicine, 2020, 37, 1816-1824.	2.3	19
110	Multiscale Modeling of Insulin Secretion. IEEE Transactions on Biomedical Engineering, 2011, 58, 3020-3023.	4.2	18
111	Race Differences in the Association of Oxidative Stress With Insulin Sensitivity in African―and Europeanâ€American Women. Obesity, 2012, 20, 972-977.	3.0	18
112	Model-Based Quantification of Glucagon-Like Peptide-1–Induced Potentiation of Insulin Secretion in Response to a Mixed Meal Challenge. Diabetes Technology and Therapeutics, 2016, 18, 39-46.	4.4	18
113	Glucose Fluxes During OGTT in Adolescents Assessed by a Stable Isotope Triple Tracer Method. Journal of Pediatric Endocrinology and Metabolism, 2008, 21, 31-45.	0.9	17
114	Hepatic insulin sensitivity in healthy and prediabetic subjects: from a dual- to a single-tracer oral minimal model. American Journal of Physiology - Endocrinology and Metabolism, 2015, 309, E161-E167.	3.5	17
115	Mechanisms of hyperinsulinaemia in apparently healthy non-obese young adults: role of insulin secretion, clearance and action and associations with plasma amino acids. Diabetologia, 2019, 62, 2310-2324.	6.3	17
116	β ell Function and Insulin Sensitivity in Adolescents From an OGTT. Obesity, 2009, 17, 233-239.	3.0	16
117	Nocturnal Glucose Metabolism in Type 1 Diabetes: A Study Comparing Single Versus Dual Tracer Approaches. Diabetes Technology and Therapeutics, 2015, 17, 587-595.	4.4	16
118	Contribution of endogenous glucagon-like peptide-1 to changes in glucose metabolism and islet function in people with type 2 diabetes four weeks after Roux-en-Y gastric bypass (RYGB). Metabolism: Clinical and Experimental, 2019, 93, 10-17.	3.4	16
119	The Padova Type 2 Diabetes Simulator from Triple-Tracer Single-Meal Studies: <i>In Silico</i> Trials Also Possible in Rare but Not-So-Rare Individuals. Diabetes Technology and Therapeutics, 2020, 22, 892-903.	4.4	16
120	Glucagon sensitivity and clearance in type 1 diabetes: insights from in vivo and in silico experiments. American Journal of Physiology - Endocrinology and Metabolism, 2015, 309, E474-E486.	3.5	15
121	Insulin Sensitivity Index-Based Optimization of Insulin to Carbohydrate Ratio: In Silico Study Shows Efficacious Protection Against Hypoglycemic Events Caused by Suboptimal Therapy. Diabetes Technology and Therapeutics, 2018, 20, 98-105.	4.4	15
122	A Model of Glucose Production During a Meal. , 2006, 2006, 5647-50.		14
123	Incorporating Long-Acting Insulin Glargine Into the UVA/Padova Type 1 Diabetes Simulator for <i>In Silico</i> Testing of MDI Therapies. IEEE Transactions on Biomedical Engineering, 2019, 66, 2889-2896.	4.2	14
124	Diabetes-associated genetic variation in TCF7L2 alters pulsatile insulin secretion in humans. JCI Insight, 2020, 5, .	5.0	14
125	<i>In Silico</i> Head-to-Head Comparison of Insulin Glargine 300 U/mL and Insulin Degludec 100 U/mL in Type 1 Diabetes. Diabetes Technology and Therapeutics, 2020, 22, 553-561.	4.4	14
126	Fasting glucagon concentrations are associated with longitudinal decline of β-cell function in non-diabetic humans. Metabolism: Clinical and Experimental, 2020, 105, 154175.	3.4	14

#	Article	IF	CITATIONS
127	Performance of individually measured vs populationâ€based <scp>C</scp> â€peptide kinetics to assess βâ€cell function in the presence and absence of acute insulin resistance. Diabetes, Obesity and Metabolism, 2018, 20, 549-555.	4.4	13
128	Liver triacylglycerol content and gestational diabetes: effects of moderate energy restriction. Diabetologia, 2017, 60, 306-313.	6.3	12
129	Exercise Effect on Insulin-Dependent and Insulin-Independent Glucose Utilization in Healthy and Type 1 Diabetes Individuals. A Modeling Study American Journal of Physiology - Endocrinology and Metabolism, 2021, 321, E122-E129.	3.5	12
130	Implications of Meal Library & Meal Detection to Glycemic Control of Type 1 Diabetes Mellitus through MPC Control. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2008, 41, 4228-4233.	0.4	11
131	Modeling Subcutaneous Absorption of Long-Acting Insulin Glargine in Type 1 Diabetes. IEEE Transactions on Biomedical Engineering, 2020, 67, 624-631.	4.2	11
132	Hyperglycemia But Not Hyperinsulinemia Is Favorable for Exercise in Type 1 Diabetes: A Pilot Study. Diabetes Care, 2020, 43, 2176-2182.	8.6	11
133	Â-Cell Function Improvements in Grade I/II Obese Subjects With Type 2 Diabetes 1 Month After Biliopancreatic Diversion: Results from modeling analyses of oral glucose tolerance tests and hyperglycemic clamp studies. Diabetes Care, 2013, 36, 4117-4124.	8.6	10
134	Epicardial and Pericardial Fat in Type 2 Diabetes: Favourable Effects of Biliopancreatic Diversion. Obesity Surgery, 2015, 25, 477-485.	2.1	10
135	Mechanisms Underlying the Pathogenesis of Isolated Impaired Glucose Tolerance in Humans. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 4816-4824.	3.6	10
136	Intranasal oxytocin fails to acutely improve glucose metabolism in obese men. Diabetes, Obesity and Metabolism, 2019, 21, 424-428.	4.4	10
137	A Reduced Incretin Effect Mediated by the rs7903146 Variant in the TCF7L2 Gene Is an Early Marker of β-Cell Dysfunction in Obese Youth. Diabetes Care, 2020, 43, 2553-2563.	8.6	10
138	Acute inhibition of lipolysis does not affect postprandial suppression of endogenous glucose production. American Journal of Physiology - Endocrinology and Metabolism, 2005, 289, E941-E947.	3.5	9
139	The effect of vagal nerve blockade using electrical impulses on glucose metabolism in nondiabetic subjects. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 2014, 7, 305.	2.4	9
140	Metabolic and Genetic Determinants of Glucose Shape After Oral Challenge in Obese Youths: A Longitudinal Study. Journal of Clinical Endocrinology and Metabolism, 2020, 105, 534-542.	3.6	8
141	Assessment of individual and standardized glucagon kinetics in healthy humans. American Journal of Physiology - Endocrinology and Metabolism, 2021, 320, E71-E77.	3.5	8
142	Limitations of the fasting proinsulin to insulin ratio as a measure of βâ€cell health in people with and without impaired glucose tolerance. European Journal of Clinical Investigation, 2021, 51, e13469.	3.4	8
143	Combination peroxisome proliferatorâ€activated receptor γ and α agonist treatment in Type 2 diabetes prevents the beneficial pioglitazone effect on liver fat content. Diabetic Medicine, 2010, 27, 150-156.	2.3	7
144	A novel natural tracer method to measure complex carbohydrate metabolism. American Journal of Physiology - Endocrinology and Metabolism, 2019, 317, E483-E493.	3.5	7

#	Article	IF	CITATIONS
145	Minimal and Maximal Models to Quantitate Glucose Metabolism: Tools to Measure, to Simulate and to Run in Silico Clinical Trials. Journal of Diabetes Science and Technology, 2021, , 193229682110152.	2.2	7
146	Model-Based Assessment of C-Peptide Secretion and Kinetics in Post Gastric Bypass Individuals Experiencing Postprandial Hyperinsulinemic Hypoglycemia. Frontiers in Endocrinology, 2021, 12, 611253.	3.5	6
147	Modeling Between-Subject Variability in Subcutaneous Absorption of a Fast-Acting Insulin Analogue by a Nonlinear Mixed Effects Approach. Metabolites, 2021, 11, 235.	2.9	6
148	Prediction of Postprandial Glycemic Exposure: Utility of fasting and 2-h glucose measurements alone and in combination with assessment of body composition, fitness, and strength. Diabetes Care, 2006, 29, 2708-2713.	8.6	5
149	Long-Term Outcomes of Biliopancreatic Diversion on Glycemic Control, Insulin Sensitivity and Beta Cell Function. Obesity Surgery, 2016, 26, 2572-2580.	2.1	5
150	Assessment of pulsatile insulin secretion derived from peripheral plasma C-peptide concentrations by nonparametric stochastic deconvolution. American Journal of Physiology - Endocrinology and Metabolism, 2019, 316, E687-E694.	3.5	5
151	Visual food cues decrease blood glucose and glucoregulatory hormones following an oral glucose tolerance test in normal-weight and obese men. Physiology and Behavior, 2020, 226, 113071.	2.1	5
152	Insulin Pulse Characteristics and Insulin Action in Non-diabetic Humans. Journal of Clinical Endocrinology and Metabolism, 2021, 106, 1702-1709.	3.6	5
153	Insulin secretion and action and the response of endogenous glucose production to a lack of glucagon suppression in non-diabetic subjects. American Journal of Physiology - Endocrinology and Metabolism, 2021, 321, E728-E736.	3.5	4
154	Modeling Intraperitoneal Insulin Absorption in Patients with Type 1 Diabetes. Metabolites, 2021, 11, 600.	2.9	3
155	Incorporation of inhaled insulin into the FDA accepted University of Virginia/Padova Type 1 Diabetes Simulator. , 2015, 2015, 3250-3.		2
156	An index of parameter reproducibility accounting for estimation uncertainty: theory and case study on β-cell responsivity and insulin sensitivity. American Journal of Physiology - Endocrinology and Metabolism, 2015, 308, E971-E977.	3.5	2
157	Long-acting Insulin in Diabetes Therapy: In Silico Clinical Trials with the UVA/Padova Type 1 Diabetes Simulator. , 2018, 2018, 4905-4908.		2
158	Physiological models for artificial pancreas development. , 2019, , 123-152.		2
159	Increased Rates of Meal Absorption Do Not Explain Elevated 1-Hour Glucose in Subjects With Normal Glucose Tolerance. Journal of the Endocrine Society, 2019, 3, 135-145.	0.2	2
160	In Silico Cloning of Target Type 2 Diabetes Population for Treatments Development and Decision Support*. , 2020, 2020, 5111-5114.		2
161	Determinants of hepatic insulin clearance – Results from a Mendelian Randomization study. Metabolism: Clinical and Experimental, 2021, 119, 154776.	3.4	2
162	Physiology-Based Run-to-Run Adaptation of Insulin to Carbohydrate Ratio Improves Type 1 Diabetes Therapy: Results from an In Silico Study. , 2019, , .		2

#	Article	IF	CITATIONS
163	A New Oral Model to Assess Postprandial Lactate Production Rate. IEEE Transactions on Biomedical Engineering, 2022, 69, 1533-1540.	4.2	2
164	The Effect of Diabetes-Associated Variation in <i>TCF7L2</i> on Postprandial Glucose Metabolism When Glucagon and Insulin Concentrations Are Matched. Metabolic Syndrome and Related Disorders, 2022, , .	1.3	2
165	A software interface for in silico testing of type 2 diabetes treatments. Computer Methods and Programs in Biomedicine, 2022, 223, 106973.	4.7	1
166	The relationship between insulin and glucagon concentrations in <scp>nonâ€diabetic</scp> humans. Physiological Reports, 2022, 10, .	1.7	1
167	Glucose Modelling. , 2014, , 355-379.		0
168	Letter to the Editor: "Defects in GLP-1 Response to an Oral Challenge Do Not Play a Significant Role in the Pathogenesis of Prediabetes― Journal of Clinical Endocrinology and Metabolism, 2019, 104, 5106-5107.	3.6	0
169	Response to Comment on "Minimal and Maximal Models to Quantitate Glucose Metabolism: Tools to Measure, to Simulate and to Run in Silico Clinical Trials― Journal of Diabetes Science and Technology, 2021, , 193229682110600.	2.2	0
170	Modeling Between-Subject Variability in Subcutaneous Absorption of a Long-Acting Insulin Glargine 100 U/mL by a Nonlinear Mixed Effects Approach. , 2021, 2021, 4226-4229.		0
171	Mixed Meal Simulation Model of Glucose-Insulin System. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2006, , .	0.5	0