List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4744279/publications.pdf Version: 2024-02-01

	331259	301761
2,086	21	39
citations	h-index	g-index
100	100	2039
122	122	2039
docs citations	times ranked	citing authors
	citations 122	2,08621citationsh-index122122

#	Article	IF	CITATIONS
1	<scp>Multiâ€ŧimepoint</scp> pattern analysis: Influence of personality and behavior on decoding contextâ€dependent brain connectivity dynamics. Human Brain Mapping, 2022, 43, 1403-1418.	1.9	7
2	Control energy assessment of spatial interactions among <scp>macroâ€scale</scp> brain networks. Human Brain Mapping, 2022, 43, 2181-2203.	1.9	5
3	Cell type-specific manifestations of cortical thickness heterogeneity in schizophrenia. Molecular Psychiatry, 2022, 27, 2052-2060.	4.1	29
4	FOD-Net: A deep learning method for fiber orientation distribution angular super resolution. Medical Image Analysis, 2022, 79, 102431.	7.0	9
5	Gyral hinges account for the highest cost and the highest communication capacity in a corticocortical network. Cerebral Cortex, 2022, 32, 3359-3376.	1.6	6
6	Modeling spatio-temporal patterns of holistic functional brain networks via multi-head guided attention graph neural networks (Multi-Head GAGNNs). Medical Image Analysis, 2022, 80, 102518.	7.0	12
7	Individual deviations from normative models of brain structure in a large cross-sectional schizophrenia cohort. Molecular Psychiatry, 2021, 26, 3512-3523.	4.1	78
8	Altered resting functional connectivity patterns associated with problematic substance use and substance use disorders during adolescence. Journal of Affective Disorders, 2021, 279, 599-608.	2.0	11
9	Large-Scale Evidence for an Association Between Peripheral Inflammation and White Matter Free Water in Schizophrenia and Healthy Individuals. Schizophrenia Bulletin, 2021, 47, 542-551.	2.3	47
10	Associations Between Delay Discounting and Connectivity of the Valuation-control System in Healthy Young Adults. Neuroscience, 2021, 452, 295-310.	1.1	6
11	Functional Magnetic Resonance Imaging–Guided Personalization of Transcranial Magnetic Stimulation Treatment for Depression. JAMA Psychiatry, 2021, 78, 337.	6.0	121
12	A prospective cohort study of prodromal Alzheimer's disease: Prospective Imaging Study of Ageing: Genes, Brain and Behaviour (PISA). NeuroImage: Clinical, 2021, 29, 102527.	1.4	19
13	Regional brain volume predicts response to methylphenidate treatment in individuals with ADHD. BMC Psychiatry, 2021, 21, 26.	1.1	14
14	White Matter Alterations Between Brain Network Hubs Underlie Processing Speed Impairment in Patients With Schizophrenia. Schizophrenia Bulletin Open, 2021, 2, sgab033.	0.9	5
15	Personalized connectivityâ€guided <scp>DLPFCâ€TMS</scp> for depression: Advancing computational feasibility, precision and reproducibility. Human Brain Mapping, 2021, 42, 4155-4172.	1.9	88
16	Network Analysis of Symptom Comorbidity in Schizophrenia: Relationship to Illness Course and Brain White Matter Microstructure. Schizophrenia Bulletin, 2021, 47, 1156-1167.	2.3	10
17	Valuation system connectivity is correlated with poly-drug use in young adults. Neuroscience Research, 2021, 173, 114-120.	1.0	2
18	Centering inclusivity in the design of online conferences—An OHBM–Open Science perspective. GigaScience, 2021, 10, .	3.3	14

#	Article	IF	CITATIONS
19	Deep Feature Mining via the Attention-Based Bidirectional Long Short Term Memory Graph Convolutional Neural Network for Human Motor Imagery Recognition. Frontiers in Bioengineering and Biotechnology, 2021, 9, 706229.	2.0	6
20	The effects of lutein and zeaxanthin on resting state functional connectivity in older Caucasian adults: a randomized controlled trial. Brain Imaging and Behavior, 2020, 14, 668-681.	1.1	9
21	Modeling Hierarchical Brain Networks via Volumetric Sparse Deep Belief Network. IEEE Transactions on Biomedical Engineering, 2020, 67, 1739-1748.	2.5	22
22	Supervised Brain Network Learning Based on Deep Recurrent Neural Networks. IEEE Access, 2020, 8, 69967-69978.	2.6	3
23	Exploring Functional Difference Between Gyri and Sulci via Region-Specific 1D Convolutional Neural Networks. Lecture Notes in Computer Science, 2020, , 250-259.	1.0	6
24	Gyral Growth Patterns of Macaque Brains Revealed by Scattered Orthogonal Nonnegative Matrix Factorization. Lecture Notes in Computer Science, 2020, , 394-403.	1.0	0
25	Neural Architecture Search for Optimization of Spatial-Temporal Brain Network Decomposition. Lecture Notes in Computer Science, 2020, , 377-386.	1.0	2
26	Spatiotemporal Attention Autoencoder (STAAE) for ADHD Classification. Lecture Notes in Computer Science, 2020, , 508-517.	1.0	10
27	A Novel fMRI Representation Learning Framework with GAN. Lecture Notes in Computer Science, 2020, , 21-29.	1.0	2
28	Discovering Functional Brain Networks with 3D Residual Autoencoder (ResAE). Lecture Notes in Computer Science, 2020, , 498-507.	1.0	3
29	Experimental Comparisons of Sparse Dictionary Learning and Independent Component Analysis for Brain Network Inference From fMRI Data. IEEE Transactions on Biomedical Engineering, 2019, 66, 289-299.	2.5	54
30	Intelligence moderates the relationship between age and inter-connectivity of resting state networks in older adults. Neurobiology of Aging, 2019, 78, 121-129.	1.5	6
31	Joint representation of connectome-scale structural and functional profiles for identification of consistent cortical landmarks in macaque brain. Brain Imaging and Behavior, 2019, 13, 1427-1443.	1.1	3
32	Latent source mining in FMRI via restricted Boltzmann machine. Human Brain Mapping, 2018, 39, 2368-2380.	1.9	55
33	Decoding Auditory Saliency from Brain Activity Patterns during Free Listening to Naturalistic Audio Excerpts. Neuroinformatics, 2018, 16, 309-324.	1.5	14
34	Brain–behavior patterns define a dimensional biotype in medication-naÃ⁻ve adults with attention-deficit hyperactivity disorder. Psychological Medicine, 2018, 48, 2399-2408.	2.7	37
35	Temporal Dynamics Assessment of Spatial Overlap Pattern of Functional Brain Networks Reveals Novel Functional Architecture of Cerebral Cortex. IEEE Transactions on Biomedical Engineering, 2018, 65, 1183-1192.	2.5	34
36	Extendable supervised dictionary learning for exploring diverse and concurrent brain activities in task-based fMRI. Brain Imaging and Behavior, 2018, 12, 743-757.	1.1	12

#	Article	IF	CITATIONS
37	Functional brain networks reconstruction using group sparsity-regularized learning. Brain Imaging and Behavior, 2018, 12, 758-770.	1.1	2
38	Spatio-temporal modeling of connectome-scale brain network interactions via time-evolving graphs. Neurolmage, 2018, 180, 350-369.	2.1	23
39	Effective connectivity of the anterior hippocampus predicts recollection confidence during natural memory retrieval. Nature Communications, 2018, 9, 4875.	5.8	46
40	Modeling resting state fMRI data via longitudinal supervised stochastic coordinate coding. , 2018, , .		4
41	Exploring intrinsic networks and their interactions using group wise temporal sparse coding. , 2018, , .		6
42	Task fMRI data analysis based on supervised stochastic coordinate coding. Medical Image Analysis, 2017, 38, 1-16.	7.0	41
43	Transcriptome Architecture of Adult Mouse Brain Revealed by Sparse Coding of Genome-Wide In Situ Hybridization Images. Neuroinformatics, 2017, 15, 285-295.	1.5	8
44	3-D functional brain network classification using Convolutional Neural Networks. , 2017, , .		6
45	Discover mouse gene coexpression landscapes using dictionary learning and sparse coding. Brain Structure and Function, 2017, 222, 4253-4270.	1.2	7
46	A novel framework for groupwise registration of fMRI images based on common functional networks. , 2017, 2017, 485-489.		2
47	Inter-subject fMRI registration based on functional networks. , 2017, , .		1
48	Decoding dynamic auditory attention during naturalistic experience. , 2017, , .		3
49	Assessing the effects of cocaine dependence and pathological gambling using group-wise sparse representation of natural stimulus FMRI data. Brain Imaging and Behavior, 2017, 11, 1179-1191.	1.1	6
50	Sparse coding reveals greater functional connectivity in female brains during naturalistic emotional experience. PLoS ONE, 2017, 12, e0190097.	1.1	5
51	N-way Decomposition: Towards Linking Concurrent EEG and fMRI Analysis During Natural Stimulus. Lecture Notes in Computer Science, 2017, , 382-389.	1.0	2
52	A data-driven method to study brain structural connectivities via joint analysis of microarray data and dMRI data. , 2016, , .		1
53	Exploring auditory network composition during free listening to audio excerpts via group-wise sparse representation. , 2016, , .		0
54	Group-wise sparse representation of brain states reveal network abnormalities in mild traumatic brain injury. , 2016, , .		2

#	Article	IF	CITATIONS
55	Identifying group-wise consistent sub-networks via spatial sparse representation of natural stimulus FMRI data. , 2016, , .		1
56	Modeling functional network dynamics via multi-scale dictionary learning and network continuums. , 2016, , .		0
57	Multple-demand system identification and characterization via sparse representations of fMRI data. , 2016, , .		7
58	Latent source mining in FMRI data via deep neural network. , 2016, , .		17
59	Identifying autism biomarkers in default mode network using sparse representation of resting-state fMRI data. , 2016, , .		3
60	Connectome-scale group-wise consistent resting-state network analysis in autism spectrum disorder. NeuroImage: Clinical, 2016, 12, 23-33.	1.4	27
61	What Makes a Good Movie Trailer?. , 2016, , .		12
62	Discover Mouse Gene Coexpression Landscape Using Dictionary Learning and Sparse Coding. Lecture Notes in Computer Science, 2016, , 63-71.	1.0	0
63	Signal sampling for efficient sparse representation of resting state FMRI data. Brain Imaging and Behavior, 2016, 10, 1206-1222.	1.1	11
64	Characterizing and differentiating task-based and resting state fMRI signals via two-stage sparse representations. Brain Imaging and Behavior, 2016, 10, 21-32.	1.1	68
65	Modeling Functional Dynamics of Cortical Gyri and Sulci. Lecture Notes in Computer Science, 2016, , 19-27.	1.0	3
66	Exploring Brain Networks via Structured Sparse Representation of fMRI Data. Lecture Notes in Computer Science, 2016, , 55-62.	1.0	0
67	A Multi-stage Sparse Coding Framework to Explore the Effects of Prenatal Alcohol Exposure. Lecture Notes in Computer Science, 2016, , 28-36.	1.0	1
68	Characterizing and differentiating task-based and resting state FMRI signals via two-stage dictionary learning. , 2015, , .		0
69	Multiscale and multimodal fusion of tract-tracing and DTI-derived fibers in macaque brains. , 2015, , .		Ο
70	Sparse representation of <scp>HC<i>P</i></scp> grayordinate data reveals novel functional architecture of cerebral cortex. Human Brain Mapping, 2015, 36, 5301-5319.	1.9	65
71	Sparsity-Constrained fMRI Decoding of Visual Saliency in Naturalistic Video Streams. IEEE Transactions on Autonomous Mental Development, 2015, 7, 65-75.	2.3	15

72 Deriving ADHD biomarkers with sparse coding based network analysis. , 2015, , .

6

#	Article	lF	CITATIONS
73	Anatomy-Guided Dense Individualized and Common Connectivity-Based Cortical Landmarks (A-DICCCOL). IEEE Transactions on Biomedical Engineering, 2015, 62, 1108-1119.	2.5	12
74	Assessing effects of prenatal alcohol exposure using group-wise sparse representation of fMRI data. Psychiatry Research - Neuroimaging, 2015, 233, 254-268.	0.9	32
75	Holistic Atlases of Functional Networks and Interactions Reveal Reciprocal Organizational Architecture of Cortical Function. IEEE Transactions on Biomedical Engineering, 2015, 62, 1120-1131.	2.5	134
76	Supervised Dictionary Learning for Inferring Concurrent Brain Networks. IEEE Transactions on Medical Imaging, 2015, 34, 2036-2045.	5.4	61
77	Signal sampling for efficient sparse representation of resting state FMRI data. , 2015, , .		3
78	HAFNI-enabled largescale platform for neuroimaging informatics (HELPNI). Brain Informatics, 2015, 2, 225-238.	1.8	13
79	Sparse representation of whole-brain fMRI signals for identification of functional networks. Medical Image Analysis, 2015, 20, 112-134.	7.0	181
80	Longitudinal Analysis of Brain Recovery after Mild Traumatic Brain Injury Based on Groupwise Consistent Brain Network Clusters. Lecture Notes in Computer Science, 2015, , 194-201.	1.0	3
81	Decoding Auditory Saliency from FMRI Brain Imaging. , 2014, , .		5
82	Group-wise connection activation detection based on DICCCOL. , 2014, , .		0
83	Learning fMRI-guided predictor of video shot changes. , 2014, , .		1
84	Integrating group-wise functional brain activities via point processes. , 2014, , .		4
85	Exploring functional brain dynamics via a Bayesian connectivity change point model. , 2014, , .		9
86	Fusing DTI and fMRI data: A survey of methods and applications. NeuroImage, 2014, 102, 184-191.	2.1	108
87	Dynamic network partition via Bayesian connectivity bi-partition change point model. , 2014, , .		2
88	A linear model for characterization of synchronization frequencies of neural networks. Cognitive Neurodynamics, 2014, 8, 55-69.	2.3	4
89	Generalized fMRI activation detection via Bayesian magnitude change point model. , 2014, , .		6
90	Discovering network-level functional interactions from working memory fMRI data. , 2014, , .		0

6

#	Article	IF	CITATIONS
91	Group-Wise FMRI Activation Detection on DICCCOL Landmarks. Neuroinformatics, 2014, 12, 513-534.	1.5	3
92	Identifying and Characterizing Resting State Networks in Temporally Dynamic Functional Connectomes. Brain Topography, 2014, 27, 747-765.	0.8	11
93	Group-Wise Optimization of Common Brain Landmarks with Joint Structural and Functional Regulations. Lecture Notes in Computer Science, 2014, 17, 716-723.	1.0	Ο
94	FMRI Signal Analysis Using Empirical Mean Curve Decomposition. IEEE Transactions on Biomedical Engineering, 2013, 60, 42-54.	2.5	21
95	Characterization of task-free and task-performance brain states via functional connectome patterns. Medical Image Analysis, 2013, 17, 1106-1122.	7.0	30
96	Identifying functional networks via sparse coding of whole brain FMRI signals. , 2013, , .		6
97	Activated cliques: Network-based activation detection in task-based FMRI. , 2013, , .		1
98	Group-wise change point detection in task FMRI data by Bayesian methods. , 2013, , .		1
99	Sparse Representation of Group-Wise FMRI Signals. Lecture Notes in Computer Science, 2013, 16, 608-616.	1.0	9
100	Sparse Representation of Higher-Order Functional Interaction Patterns in Task-Based FMRI Data. Lecture Notes in Computer Science, 2013, 16, 626-634.	1.0	13
101	Modeling Cognitive Processes via Multi-stage Consistent Functional Response Detection. Lecture Notes in Computer Science, 2013, , 180-188.	1.0	2
102	Anatomy-Guided Discovery of Large-Scale Consistent Connectivity-Based Cortical Landmarks. Lecture Notes in Computer Science, 2013, 16, 617-625.	1.0	0
103	Group-Wise FMRI Activation Detection on Corresponding Cortical Landmarks. Lecture Notes in Computer Science, 2013, 16, 665-673.	1.0	Ο
104	Axonal Fiber Terminations Concentrate on Gyri. Cerebral Cortex, 2012, 22, 2831-2839.	1.6	116
105	Visual analytics of brain networks. NeuroImage, 2012, 61, 82-97.	2.1	31
106	Assessing the dynamics on functional brain networks using spectral graphy theory. , 2011, , .		5
107	Activated Fibers: Fiber-Centered Activation Detection in Task-Based FMRI. Lecture Notes in Computer Science, 2011, 22, 574-587.	1.0	7
108	Resting State fMRI-Guided Fiber Clustering. Lecture Notes in Computer Science, 2011, 14, 149-156.	1.0	6

#	Article	IF	CITATIONS
109	Identification of Cortical Landmarks Based on Consistent Connectivity to Subcortical Structures. Lecture Notes in Computer Science, 2011, , 68-75.	1.0	0
110	Bridging low-level features and high-level semantics via fMRI brain imaging for video classification. , 2010, , .		25
111	Fiber-Centered Analysis of Brain Connectivities Using DTI and Resting State FMRI Data. Lecture Notes in Computer Science, 2010, 13, 143-150.	1.0	12