Morris Karmazyn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4743454/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chemical components of ginseng, their biotransformation products and their potential as treatment of hypertension. Molecular and Cellular Biochemistry, 2021, 476, 333-347.	1.4	24
2	Inhibition of angiotensin Il–induced hypertrophy and cardiac dysfunction by North American ginseng (<i>Panax quinquefolius</i>). Canadian Journal of Physiology and Pharmacology, 2021, 99, 512-521.	0.7	3
3	Leptin-induced cardiomyocyte hypertrophy is associated with enhanced mitochondrial fission. Molecular and Cellular Biochemistry, 2019, 454, 33-44.	1.4	20
4	Cardiomyocyte Antihypertrophic Effect of Adipose Tissue Conditioned Medium from Rats and Its Abrogation by Obesity is Mediated by the Leptin to Adiponectin Ratio. PLoS ONE, 2016, 11, e0145992.	1.1	4
5	North American ginseng (Panax quinquefolius) suppresses β-adrenergic-dependent signalling, hypertrophy, and cardiac dysfunction. Canadian Journal of Physiology and Pharmacology, 2016, 94, 1325-1335.	0.7	9
6	Identification of functional leptin receptors expressed in ventricular mitochondria. Molecular and Cellular Biochemistry, 2015, 408, 155-162.	1.4	9
7	Myocardial Hypertrophic Remodeling and Impaired Left Ventricular Function in Mice with a Cardiac-Specific Deletion of Janus Kinase 2. American Journal of Pathology, 2015, 185, 3202-3210.	1.9	10
8	Early and Transient Sodium-Hydrogen Exchanger Isoform 1 Inhibition Attenuates Subsequent Cardiac Hypertrophy and Heart Failure Following Coronary Artery Ligation. Journal of Pharmacology and Experimental Therapeutics, 2014, 351, 492-499.	1.3	20
9	Probiotic Administration Attenuates Myocardial Hypertrophy and Heart Failure After Myocardial Infarction in the Rat. Circulation: Heart Failure, 2014, 7, 491-499.	1.6	231
10	NHE-1: Still a viable therapeutic target. Journal of Molecular and Cellular Cardiology, 2013, 61, 77-82.	0.9	91
11	The potential contribution of circulating and locally produced leptin to cardiac hypertrophy and failure. Canadian Journal of Physiology and Pharmacology, 2013, 91, 883-888.	0.7	12
12	Identification of Fat Mass and Obesity Associated (FTO) Protein Expression in Cardiomyocytes: Regulation by Leptin and Its Contribution to Leptin-Induced Hypertrophy. PLoS ONE, 2013, 8, e74235.	1.1	37
13	Phenylephrineâ€induced cardiomyocyte hypertrophy and calcification are regulated by CD73â€TNAP interaction and inhibited by adenosine receptor activation. FASEB Journal, 2013, 27, 386.8.	0.2	1
14	Adiponectin inhibits leptinâ€induced cardiomyocyte hypertrophy by attenuation of calcineurin/NFAT activation. FASEB Journal, 2013, 27, 1085.9.	0.2	0
15	Leptin-induced Cardiomyocyte Hypertrophy Reveals both Calcium-dependent and Calcium-independent/RhoA-dependent Calcineurin Activation and NFAT Nuclear Translocation. Cellular Signalling, 2012, 24, 2283-2290.	1.7	27
16	The Obesity-Related Peptide Leptin Sensitizes Cardiac Mitochondria to Calcium-Induced Permeability Transition Pore Opening and Apoptosis. PLoS ONE, 2012, 7, e41612.	1.1	25
17	Therapeutic Potential of Ginseng in the Management of Cardiovascular Disorders. Drugs, 2011, 71, 1989-2008.	4.9	86
18	Expression of mitochondrial fusion–fission proteins during post-infarction remodeling: the effect of NHE-1 inhibition. Basic Research in Cardiology, 2011, 106, 99-109.	2.5	85

Morris Karmazyn

#	Article	IF	CITATIONS
19	Anti-hypertrophic effect of NHE-1 inhibition involves GSK-3β-dependent attenuation of mitochondrial dysfunction. Journal of Molecular and Cellular Cardiology, 2009, 46, 998-1007.	0.9	57
20	RhoA links PI3K/Akt/mTOR signaling to p38 MAPK/GATAâ€4 activation in leptin–induced cardiomyocyte hypertrophy. FASEB Journal, 2009, 23, 577.7.	0.2	0
21	The role of NHE-1 in myocardial hypertrophy and remodelling. Journal of Molecular and Cellular Cardiology, 2008, 44, 647-653.	0.9	102
22	Signalling mechanisms underlying the metabolic and other effects of adipokines on the heart. Cardiovascular Research, 2008, 79, 279-286.	1.8	99
23	Leptin-induced cardiomyocyte hypertrophy involves selective caveolae and RhoA/ROCK-dependent p38 MAPK translocation to nuclei. Cardiovascular Research, 2007, 77, 64-72.	1.8	84
24	Mitochondrial Permeability Transition Pore Opening as an Endpoint to Initiate Cell Death and as a Putative Target for Cardioprotection. Cellular Physiology and Biochemistry, 2007, 20, 1-22.	1.1	254
25	Leptin as a Cardiac Hypertrophic Factor: A Potential Target for Therapeutics. Trends in Cardiovascular Medicine, 2007, 17, 206-211.	2.3	58
26	Role of Rhoâ€mediated processes and intact actin cytoskeleton in leptin induced cardiomyocytes hypertrophy. FASEB Journal, 2006, 20, A691.	0.2	0
27	Cardiovascular Effects of Chronic Intermittent Hypoxia in Mice. FASEB Journal, 2006, 20, .	0.2	0
28	Leptin Induces Vascular Smooth Muscle Cell Hypertrophy through Angiotensin II- and Endothelin-1-Dependent Mechanisms and Mediates Stretch-Induced Hypertrophy. Journal of Pharmacology and Experimental Therapeutics, 2005, 315, 1075-1084.	1.3	99
29	Rat heart is a site of leptin production and action. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 287, H2877-H2884.	1.5	142
30	Inhibitors of sodium-hydrogen exchange as therapeutic agents for the treatment of heart disease. Expert Opinion on Therapeutic Patents, 2003, 13, 1411-1425.	2.4	0
31	The Obesity-Associated Peptide Leptin Induces Hypertrophy in Neonatal Rat Ventricular Myocytes. Circulation Research, 2003, 93, 277-279.	2.0	225
32	Aldosterone Increases NHE-1 Expression and Induces NHE-1-Dependent Hypertrophy in Neonatal Rat Ventricular Myocytes. Hypertension, 2003, 42, 1171-1176.	1.3	104
33	Antiarrhythmic effects of Na-H exchange inhibition. Drug Development Research, 2002, 55, 22-28.	1.4	4
34	The Myocardial Na+/H+ Exchanger. Drugs, 2001, 61, 375-389.	4.9	129
35	Therapeutic potential of Na-H exchange inhibitors for the treatment of heart failure. Expert Opinion on Investigational Drugs, 2001, 10, 835-843.	1.9	21
36	Role of sodium-hydrogen exchange in cardiac hypertrophy and heart failure: a novel and promising therapeutic target. Basic Research in Cardiology, 2001, 96, 325-328.	2.5	48

MORRIS KARMAZYN

#	Article	IF	CITATIONS
37	Pharmacology and clinical assessment of cariporide for the treatment coronary artery diseases. Expert Opinion on Investigational Drugs, 2000, 9, 1099-1108.	1.9	38
38	The Role of the Myocardial Sodium-Hydrogen Exchanger in Mediating Ischemic and Reperfusion Injury: From Amiloride to Cariporidea. Annals of the New York Academy of Sciences, 1999, 874, 326-334.	1.8	71
39	Mechanisms of protection of the ischemic and reperfused myocardium by sodium-hydrogen exchange inhibition. , 1999, 8, 33-38.		42
40	Cardioprotective Effects of Propofol and Sevoflurane in Ischemic and Reperfused Rat HeartsÂ. Anesthesiology, 1999, 91, 1349-1349.	1.3	97
41	Title is missing!. , 1997, 176, 171-178.		2
42	Adenosineâ€sensitive α ₁ â€adrenoceptor effects on reperfused ischaemic hearts: comparison with phorbol ester. British Journal of Pharmacology, 1994, 112, 1007-1016.	2.7	14
43	Na ⁺ /H ⁺ exchange inhibitors reverse lactateâ€induced depression in postischaemic ventricular recovery. British Journal of Pharmacology, 1993, 108, 50-56.	2.7	15
44	Calcium dependent positive inotropic effects of low phorbol ester concentrations in isolated rat hearts. Cardiovascular Research, 1993, 27, 390-395.	1.8	9
45	Mechanisms for cardiac depression induced by phorbol myristate acetate in working rat hearts. British Journal of Pharmacology, 1990, 100, 826-830.	2.7	29
46	Effect of D,Lâ€carnitine on the response of the isolated heart of the rat to ischaemia and reperfusion: relation to mitochondrial function. British Journal of Pharmacology, 1989, 98, 1319-1327.	2.7	13