Jincheng Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4743028/publications.pdf

Version: 2024-02-01

196777 190340 3,761 54 29 53 citations h-index g-index papers 54 54 54 6881 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Fabrication of graphitic carbon Nitride/Nonstoichiometric molybdenum oxide nanorod composite with the nonmetal plasma enhanced photocatalytic hydrogen evolution activity. Journal of Colloid and Interface Science, 2022, 606, 848-859.	5.0	21
2	Photo-thermo catalytic selective oxidation of cyclohexane by In-situ prepared nonstoichiometric Molybdenum oxide and Silver-palladium alloy composite. Journal of Colloid and Interface Science, 2022, 607, 954-966.	5.0	21
3	Mxene-TiO2 composite with exposed {101} facets for the improved photocatalytic hydrogen evolution activity. Journal of Alloys and Compounds, 2022, 896, 163039.	2.8	25
4	Manganese phosphorous trifulfide nanosheets and nitrogen doped carbon dot composites with manganese vacancies for a greatly enhanced hydrogen evolution. Journal of Colloid and Interface Science, 2022, 627, 438-448.	5.0	7
5	Pore pressure and spalling in fire-exposed high-strength self-consolidating concrete reinforced with hybrid fibres. European Journal of Environmental and Civil Engineering, 2021, 25, 337-367.	1.0	7
6	Construction of novel 2D-0D MnPS3–Cs4W11O35 composite for the improved photocatalytic hydrogen evolution activity. International Journal of Hydrogen Energy, 2021, 46, 33823-33834.	3.8	10
7	Optimal synthesis of platinum-free 1D/2D CdS/MoS2 (CM) heterojunctions with improved photocatalytic hydrogen production performance. Journal of Alloys and Compounds, 2020, 813, 152234.	2.8	33
8	In-situ preparation of molybdenum trioxide-silver composites for the improved photothermal catalytic performance of cyclohexane oxidation. Journal of Colloid and Interface Science, 2020, 580, 377-388.	5.0	24
9	Photothermal oxidation of cyclohexane by graphene oxide-based composites with high selectivity to KA oil. Molecular Catalysis, 2020, 493, 111103.	1.0	5
10	Construction of Z-scheme tungsten trioxide nanosheets-nitrogen-doped carbon dots composites for the enhanced photothermal synergistic catalytic oxidation of cyclohexane. Applied Catalysis B: Environmental, 2019, 259, 118063.	10.8	62
11	Simple synthesis of WO3-Au composite and their improved photothermal synergistic catalytic performance for cyclohexane oxidation. Molecular Catalysis, 2019, 473, 110389.	1.0	14
12	High-performance silver nanoparticles coupled with monolayer hydrated tungsten oxide nanosheets: The structural effects in photocatalytic oxidation of cyclohexane. Journal of Colloid and Interface Science, 2018, 516, 172-181.	5.0	34
13	Silver Growth on Tungsten Oxide Nanowires for Nitrogen Dioxide Sensing at Low Temperature. Proceedings (mdpi), 2018, 2, .	0.2	O
14	Facile preparation of Z-scheme CdS Ag TiO2 composite for the improved photocatalytic hydrogen generation activity. International Journal of Hydrogen Energy, 2018, 43, 18232-18241.	3.8	32
15	Facile synthesis of high quality Z-scheme W18O49 nanowire-g-C3N4 photocatalyst for the enhanced visible light-driven photocatalytic hydrogen evolution. Journal of Alloys and Compounds, 2018, 764, 1-9.	2.8	34
16	Aerobic oxidation of cyclohexane catalyzed by graphene oxide: Effects of surface structure and functionalization. Molecular Catalysis, 2017, 431, 1-8.	1.0	29
17	General Synthetic Protocol for the Synthesis of Ruâ€X (X=Rh, Pd, Ag) Heterogeneous Ultrathin Nanowires with a Tunable Composition. ChemCatChem, 2017, 9, 347-353.	1.8	2
18	Effect of Synthesis Method on the Nanostructure and Solar-Driven Photocatalytic Properties of TiO ₂ -CuS Composites. ACS Sustainable Chemistry and Engineering, 2017, 5, 1347-1357.	3.2	41

#	Article	IF	Citations
19	Novel graphene oxide-silver nanorod composites with enhanced photocatalytic performance under visible light irradiation. Journal of Alloys and Compounds, 2017, 698, 170-177.	2.8	23
20	Ag loaded WO3 nanoplates for efficient photocatalytic degradation of sulfanilamide and their bactericidal effect under visible light irradiation. Journal of Hazardous Materials, 2016, 318, 407-416.	6.5	109
21	Monodisperse mesoporous Ta2O5 colloidal spheres as a highly effective photocatalyst for hydrogen production. International Journal of Hydrogen Energy, 2016, 41, 17225-17232.	3.8	16
22	Facile room-temperature synthesis of carboxylated graphene oxide-copper sulfide nanocomposite with high photodegradation and disinfection activities under solar light irradiation. Scientific Reports, 2015, 5, 16369.	1.6	100
23	Oxygen vacancy-enhanced visible light-driven photocatalytic activity of TiO2 sphere–W18O49 nanowire bundle heterojunction. Applied Catalysis A: General, 2015, 500, 30-39.	2.2	30
24	Low-temperature synthesis of graphene/Bi2Fe4O9 composite for synergistic adsorption-photocatalytic degradation of hydrophobic pollutant under solar irradiation. Chemical Engineering Journal, 2015, 262, 1022-1032.	6.6	106
25	Gramâ€Scale Synthesis of Ultrathin Tungsten Oxide Nanowires and their Aspect Ratioâ€Dependent Photocatalytic Activity. Advanced Functional Materials, 2014, 24, 6029-6037.	7.8	100
26	Three dimensional carbogenic dots/TiO2 nanoheterojunctions with enhanced visible light-driven photocatalytic activity. Carbon, 2014, 79, 369-379.	5.4	59
27	Multi-Branched CdSe Nanocrystals Stabilized by Weak Ligand for Hybrid Solar Cell Application. Journal of Nanoscience and Nanotechnology, 2014, 14, 2836-2841.	0.9	4
28	Multifunctional graphene oxide-TiO2-Ag nanocomposites for high performance water disinfection and decontamination under solar irradiation. Journal of Hazardous Materials, 2013, 261, 214-223.	6.5	162
29	Enhanced performance of hybrid solar cells using carboxylic acid-functionalized graphene oxide supported TiO2 nanorod composites. Materials Letters, 2013, 95, 178-181.	1.3	18
30	Graphene oxide–CdS composite with high photocatalytic degradation and disinfection activities under visible light irradiation. Journal of Hazardous Materials, 2013, 250-251, 412-420.	6.5	263
31	The size and dispersion effect of modified graphene oxide sheets on the photocatalytic H2 generation activity of TiO2 nanorods. Carbon, 2013, 60, 445-452.	5.4	29
32	Room Temperature Reduction of Graphene Oxide by Formic Acid Catalyzed by Platinum Nanoparticles. Journal of Nanoscience and Nanotechnology, 2013, 13, 2967-2973.	0.9	1
33	Enhancing Stability and Photocatalytic Activity of ZnO Nanoparticles by Surface Modification of Graphene Oxide. Journal of Nanoscience and Nanotechnology, 2012, 12, 3896-3902.	0.9	23
34	Graphene oxide enwrapped Ag3PO4 composite: towards a highly efficient and stable visible-light-induced photocatalyst for water purification. Catalysis Science and Technology, 2012, 2, 2525.	2.1	218
35	Oleic acid-assisted exfoliated few layer graphene films as counter electrode in dye-sensitized solar cell. Journal of Alloys and Compounds, 2012, 545, 99-104.	2.8	12
36	Hierarchical TiO2/CdS "spindle-like―composite with high photodegradation and antibacterial capability under visible light irradiation. Journal of Hazardous Materials, 2012, 229-230, 209-216.	6.5	91

#	Article	IF	CITATIONS
37	A novel strategy to fabricate inorganic nanofibrous membranes for water treatment: use of functionalized graphene oxide as a cross linker. RSC Advances, 2012, 2, 5134.	1.7	14
38	High quality graphene oxide–CdS–Pt nanocomposites for efficient photocatalytic hydrogen evolution. Journal of Materials Chemistry, 2012, 22, 2292-2298.	6.7	156
39	Enhancing the performance of dye-sensitized solar cells by benzoic acid modified TiO2 nanorod electrode. Renewable Energy, 2012, 38, 214-218.	4.3	36
40	Facile synthesis of monodispersed silver nanoparticles on graphene oxide sheets with enhanced antibacterial activity. New Journal of Chemistry, 2011, 35, 1418.	1.4	193
41	Fabrication of magnetic cryptomelane-type manganese oxide nanowires for water treatment. Chemical Communications, 2011, 47, 1890-1892.	2.2	62
42	High-quality reduced graphene oxide-nanocrystalline platinum hybrid materials prepared by simultaneous co-reduction of graphene oxide and chloroplatinic acid. Nanoscale Research Letters, 2011, 6, 241.	3.1	83
43	Gram-scale production of graphene oxide–TiO2 nanorod composites: Towards high-activity photocatalytic materials. Applied Catalysis B: Environmental, 2011, , .	10.8	20
44	Highly efficient CuO incorporated TiO2 nanotube photocatalyst for hydrogen production from water. International Journal of Hydrogen Energy, 2011 , 36 , 6560 - 6568 .	3.8	202
45	Highly efficient TiO2 nanotube photocatalyst for simultaneous hydrogen production and copper removal from water. International Journal of Hydrogen Energy, 2011, 36, 6538-6545.	3.8	86
46	Synthesis of graphene soluble in organic solvents by simultaneous ether-functionalization with octadecane groups and reduction. Materials Letters, 2010, 64, 2236-2239.	1.3	24
47	Selfâ€Assembling TiO ₂ Nanorods on Large Graphene Oxide Sheets at a Twoâ€Phase Interface and Their Antiâ€Recombination in Photocatalytic Applications. Advanced Functional Materials, 2010, 20, 4175-4181.	7.8	720
48	Reduction of functionalized graphite oxides by trioctylphosphine in non-polar organic solvents. Carbon, 2010, 48, 2282-2289.	5.4	106
49	Fe ₂ O ₃ â€Modified Hydrogen Storage Alloys as Electrocatalyst for Borohydride Oxidation. Chinese Journal of Chemistry, 2009, 27, 2166-2170.	2.6	4
50	Aqueous synthesis of type-II CdTe/CdSe core–shell quantum dots for fluorescent probe labeling tumor cells. Nanotechnology, 2009, 20, 095102.	1.3	45
51	Highâ€Tripletâ€Energy Poly(9,9′â€bis(2â€ethylhexyl)â€3,6â€fluorene) as Host for Blue and Green Phosphoreso Complexes. Advanced Materials, 2008, 20, 2359-2364.	cent 11.1	73
52	Surface ligand effects in MEH-PPV/TiO2 hybrid solar cells. Solar Energy Materials and Solar Cells, 2008, 92, 1403-1409.	3.0	74
53	Size-tunable near-infrared PbS nanoparticles synthesized from lead carboxylate and sulfur with oleylamine as stabilizer. Nanotechnology, 2008, 19, 345602.	1.3	46
54	Synthesis and physical properties of sulfonated syndiotactic polystyrene ionomers. Polymer International, 2001, 50, 421-428.	1.6	52