Samy A Madbouly

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4742903/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biodegradable shape-memory polymers and composites. ChemistrySelect, 2023, 8, 2049-2070.	0.7	3
2	Bio-based polyhydroxyalkanoates blends and composites. ChemistrySelect, 2023, 8, 1107-1125.	0.7	1
3	Biodegradable poly(butylene adipate- <i>co</i> -terephthalate) (PBAT). ChemistrySelect, 2023, 8, 1127-1156.	0.7	7
4	Biodegradable polylactic acid (PLA). ChemistrySelect, 2023, 8, 869-894.	0.7	1
5	Soybean-based polymers and composites. ChemistrySelect, 2023, 8, 849-868.	0.7	0
6	Waterborne Polyurethane Dispersions and Thin Films: Biodegradation and Antimicrobial Behaviors. Molecules, 2021, 26, 961.	1.7	21
7	Recyclable and Fluorescent Epoxy Polymer Networks from Cardanol Via Solvent-Free Epoxy-Thiol Chemistry. ACS Applied Polymer Materials, 2021, 3, 3082-3092.	2.0	18
8	Novel Internal Emulsifiers for High Biocontent Sustainable Pressure Sensitive Adhesives. ACS Sustainable Chemistry and Engineering, 2021, 9, 147-157.	3.2	18
9	Sustainable Polyurethane–Lignin Aqueous Dispersions and Thin Films: Rheological Behavior and Thermomechanical Properties. ACS Applied Polymer Materials, 2020, 2, 5198-5207.	2.0	7
10	Preparation of Nanoscale Semi-IPNs with an Interconnected Microporous Structure via Cationic Polymerization of Bio-Based Tung Oil in a Homogeneous Solution of Poly(Îμ-caprolactone). ACS Omega, 2020, 5, 9977-9984.	1.6	8
11	Recent advances in vegetable oil-based polymers and their composites. Progress in Polymer Science, 2017, 71, 91-143.	11.8	497
12	Selfâ€Metathesis of 10â€Undecenâ€1â€Ol with Ruâ€Amineâ€Based Complex for Preparing the Soft Segment an Chain Extender of Novel Castor Oilâ€Based Polyurethanes. Macromolecular Symposia, 2016, 368, 30-39.	d _{0.4}	8
13	Renewable Polymers Prepared from Vanillin and Its Derivatives. Macromolecular Chemistry and Physics, 2015, 216, 1816-1822.	1.1	61
14	Processing and characterization of bioâ€based poly (hydroxyalkanoate)/poly(amide) blends: Improved flexibility and impact resistance of PHAâ€based plastics. Journal of Applied Polymer Science, 2015, 132, .	1.3	12
15	Biorenewable polymer composites from tall oilâ€based polyamide and ligninâ€cellulose fiber. Journal of Applied Polymer Science, 2015, 132, .	1.3	12
16	Biorenewable thermosetting copolymer based on soybean oil and eugenol. European Polymer Journal, 2015, 69, 16-28.	2.6	76
17	<i>In situ</i> polymerization of bioâ€based thermosetting polyurethane/graphene oxide nanocomposites. Journal of Applied Polymer Science, 2015, 132,	1.3	28
18	Biobased Polyurethanes Prepared from Different Vegetable Oils. ACS Applied Materials & Interfaces, 2015, 7, 1226-1233.	4.0	264

SAMY A MADBOULY

#	Article	IF	CITATIONS
19	Bio-based soft elastomeric capacitor for structural health monitoring applications. Structural Health Monitoring, 2015, 14, 158-167.	4.3	14
20	Characterization and biodegradation behavior of bio-based poly(lactic acid) and soy protein blends for sustainable horticultural applications. Green Chemistry, 2015, 17, 380-393.	4.6	100
21	PMMA-g-SOY as a sustainable novel dielectric material. RSC Advances, 2014, 4, 18240.	1.7	59
22	Semi-interpenetrating polymer networks prepared from in situ cationic polymerization of bio-based tung oil with biodegradable polycaprolactone. RSC Advances, 2014, 4, 6710.	1.7	15
23	Bio-inspired green surface functionalization of PMMA for multifunctional capacitors. RSC Advances, 2014, 4, 6677.	1.7	137
24	Biodegradation behavior of bacterial-based polyhydroxyalkanoate (PHA) and DDGS composites. Green Chemistry, 2014, 16, 1911-1920.	4.6	57
25	Novel bio-based composites of polyhydroxyalkanoate (PHA)/distillers dried grains with solubles (DDGS). RSC Advances, 2014, 4, 39802-39808.	1.7	23
26	Rheological Behavior of Environmentally Friendly Castor Oil-Based Waterborne Polyurethane Dispersions. Macromolecules, 2013, 46, 4606-4616.	2.2	128
27	Effects of blending on the molecular dynamics of highly interacting binary polymer blends of poly(methyl methacrylate) and poly[styrene-co -(maleic anhydride)]. Polymer International, 2013, 62, 1659-1666.	1.6	1
28	Broadband Dielectric Relaxation Spectroscopy of Functionalized Biobased Castor Oil Copolymer Thermosets. Macromolecular Chemistry and Physics, 2013, 214, 2891-2902.	1.1	3
29	Degradable Polyurethane/Soy Protein Shapeâ€Memory Polymer Blends Prepared Via Environmentallyâ€Friendly Aqueous Dispersions. Macromolecular Materials and Engineering, 2012, 297, 1213-1224.	1.7	17
30	Nonisothermal Crystallization Kinetics of Miscible Blends of Polycaprolactone and Crosslinked Carboxylated Polyester Resin. Journal of Macromolecular Science - Physics, 2011, 50, 427-443.	0.4	9
31	Recent advances in synthesis, characterization and rheological properties of polyurethanes and POSS/polyurethane nanocomposites dispersions and films. Progress in Polymer Science, 2009, 34, 1283-1332.	11.8	299
32	Shape-Memory Polymer Composites. Advances in Polymer Science, 2009, , 41-95.	0.4	78
33	Isothermal crystallization kinetics in binary miscible blend of poly(É›-caprolactone)/tetramethyl polycarbonate. Journal of Applied Polymer Science, 2007, 103, 3307-3315.	1.3	14
34	Nanostructured Polyurethane/POSS Hybrid Aqueous Dispersions Prepared by Homogeneous Solution Polymerization. Macromolecules, 2006, 39, 7037-7043.	2.2	124
35	Kinetic Analysis of Fractal Gel Formation in Waterborne Polyurethane Dispersions Undergoing High Deformation Flows. Macromolecules, 2006, 39, 4144-4151.	2.2	66
36	Isothermal Crystallization Kinetics of Poly(É›-caprolactone) with Tetramethyl Polycarbonate and Poly(styrene-co-acrylonitrile) Blends Using Broadband Dielectric Spectroscopy. Macromolecular Chemistry and Physics, 2006, 207, 978-986.	1.1	17

SAMY A MADBOULY

#	Article	IF	CITATIONS
37	Morphology and Properties of Novel Blends Prepared from Simultaneous In Situ Polymerization and Compatibilization of Macrocyclic Carbonates and Maleated Poly(propylene). Macromolecular Chemistry and Physics, 2006, 207, 1233-1243.	1.1	16
38	Thermal-induced simultaneous liquid–liquid phase separation and liquid–solid transition in aqueous polyurethane dispersions. Polymer, 2005, 46, 10897-10907.	1.8	28
39	Effect of ionic content, solid content, degree of neutralization, and chain extension on aqueous polyurethane dispersions prepared by prepolymer method. Journal of Applied Polymer Science, 2005, 98, 2514-2520.	1.3	92
40	Phase Behavior and Morphology of Poly(Methyl Methacrylate)/Poly(αâ€Methyl) Tj ETQq0 0 0 rgBT /Overlock 10 Science - Reviews in Macromolecular Chemistry and Physics, 2005, 45, 19-58.) Tf 50 627 2.2	7 Td (Styreneâ 3
41	Rheokinetics of Thermal-Induced Gelation of Waterborne Polyurethane Dispersions. Macromolecules, 2005, 38, 10178-10184.	2.2	64
42	Rheological Behavior of Aqueous Polyurethane Dispersions:Â Effects of Solid Content, Degree of Neutralization, Chain Extension, and Temperature. Macromolecules, 2005, 38, 4014-4023.	2.2	79
43	Thermal Crossâ€Linking of Poly(Vinyl Methyl Ether). II. Rheological Behavior at the Gel Point. Journal of Macromolecular Science - Physics, 2004, 43, 655-670.	0.4	12
44	Crystallization kinetics of poly(ethylene oxide) from its melt and from mixtures with tetrahydronaphthalene and oligo(ethylene oxide-block-dimethylsiloxane). Journal of Polymer Science, Part B: Polymer Physics, 2004, 42, 820-829.	2.4	10
45	Spinodal Decomposition in Binary Blend of Poly(methyl methacrylate)/Poly(α-methyl) Tj ETQq1 1 0.784314 rgE Physics, 2004, 205, 979-986.	T /Overloc 1.1	k 10 Tf 50 42. 9
46	Rheological Investigation of Shear Induced-Mixing and Shear Induced-Demixing for Polystyrene/Poly(vinyl methyl ether) Blend. Macromolecular Chemistry and Physics, 2004, 205, 1222-1230.	1.1	26
47	Isothermal Crystallization of Poly(É›-caprolactone) in Blend with Poly(styrene-co-acrylonitrile): Influence of Phase Separation Process. Macromolecular Chemistry and Physics, 2004, 205, 1923-1931.	1.1	19
48	Thermal Crossâ€Linking of Poly(Vinyl Methyl Ether). I. Effect of Crossâ€Linking Process on the Viscoelastic Properties. Journal of Macromolecular Science - Physics, 2004, 43, 471-487.	0.4	10
49	Thermal Crossâ€Linking of Poly(Vinyl Methyl Ether). III. Rheological Kinetics of Crossâ€Linking Reaction. Journal of Macromolecular Science - Physics, 2004, 43, 819-832.	0.4	2
50	Shear-Induced Crystallization and Shear-Induced Dissolution of Poly(ethylene oxide) in Mixtures with Tetrahydronaphthalene and Oligo(dimethyl siloxane-b-ethylene oxide). Macromolecular Chemistry and Physics, 2003, 204, 417-424.	1.1	7
51	Binary Miscible Blends of Poly(Methyl Methacrylate)/Poly(α-Methyl Styrene-co-Acrylonitrile). IV. Relationship Between Shear Flow and Viscoelastic Properties. Journal of Macromolecular Science - Physics, 2003, 42, 1209-1223.	0.4	5
52	Shear influence on the phase behavior of systems containing a homopolymer A and a block copolymer AB. Macromolecular Symposia, 2003, 198, 41-52.	0.4	3
53	Crystallization kinetics of poly(ethylene oxide) in mixtures with tetrahydronaphthalene and oligo(dimethyl siloxane-b-ethylene oxide) copolymer. Macromolecular Symposia, 2003, 203, 131-138.	0.4	0
54	Rheological Investigation of Shear-Induced Crystallization of Poly(ϵ-Caprolactone). Journal of Macromolecular Science - Physics, 2003, 42, 269-281.	0.4	12

SAMY A MADBOULY

#	Article	IF	CITATIONS
55	Broadband Dielectric Spectroscopy for Poly(methyl methacrylate)/Poly($\hat{l}\pm$ -methyl) Tj ETQq1 1 0.784314 rgBT /Ov	verloçk 10 1.3	Tf 50 742 To
56	Binary miscible blends of poly(methyl methacrylate)/poly(α-methyl styrene-co-acrylonitrile): II. rheological behavior during phase-separation. Journal of Macromolecular Science - Physics, 2002, 41, 271-287.	0.4	14
57	Binary miscible blends of poly(methyl methacrylate)/poly(α-methyl styrene-co-acrylonitrile). III. Investigation of the phase behavior and morphology during shear flow. Journal of Macromolecular Science - Physics, 2002, 41, 629-646.	0.4	6
58	Binary miscible blends of poly(methyl methacrylate)/poly(α-methyl styrene-co-acrylonitrile): I. Rheological behavior. Journal of Macromolecular Science - Physics, 2002, 41, 255-269.	0.4	22
59	Effect of Method of Preparation on Molecular Packing of TMPC/PS Blends. Polymer International, 1997, 42, 143-148.	1.6	11
60	Dielectric Investigation of Molecular Dynamics of Blends: III. Effect of Molecular Weight in TMPC/PS Blends. Polymer International, 1996, 41, 395-406.	1.6	4
61	Dielectric investigation of the molecular dynamics in blends: polymers with similar molecular architecture (TMPC/PC blend). Polymer International, 1995, 36, 269-277.	1.6	22
62	Dielectric investigation of the molecular dynamics of blends (II): polymers with dissimilar molecular architecture (PS/TMPC blend). Polymer International, 1995, 37, 267-276.	1.6	19