Samy A Madbouly

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4742903/publications.pdf

Version: 2024-02-01

62 papers 2,720 citations

304602 22 h-index 51 g-index

64 all docs 64
docs citations

64 times ranked 2969 citing authors

#	Article	IF	Citations
1	Recent advances in vegetable oil-based polymers and their composites. Progress in Polymer Science, 2017, 71, 91-143.	11.8	497
2	Recent advances in synthesis, characterization and rheological properties of polyurethanes and POSS/polyurethane nanocomposites dispersions and films. Progress in Polymer Science, 2009, 34, 1283-1332.	11.8	299
3	Biobased Polyurethanes Prepared from Different Vegetable Oils. ACS Applied Materials & Discrete Repairs (2015, 7, 1226-1233).	4.0	264
4	Bio-inspired green surface functionalization of PMMA for multifunctional capacitors. RSC Advances, 2014, 4, 6677.	1.7	137
5	Rheological Behavior of Environmentally Friendly Castor Oil-Based Waterborne Polyurethane Dispersions. Macromolecules, 2013, 46, 4606-4616.	2.2	128
6	Nanostructured Polyurethane/POSS Hybrid Aqueous Dispersions Prepared by Homogeneous Solution Polymerization. Macromolecules, 2006, 39, 7037-7043.	2.2	124
7	Characterization and biodegradation behavior of bio-based poly(lactic acid) and soy protein blends for sustainable horticultural applications. Green Chemistry, 2015, 17, 380-393.	4.6	100
8	Effect of ionic content, solid content, degree of neutralization, and chain extension on aqueous polyurethane dispersions prepared by prepolymer method. Journal of Applied Polymer Science, 2005, 98, 2514-2520.	1.3	92
9	Rheological Behavior of Aqueous Polyurethane Dispersions:Â Effects of Solid Content, Degree of Neutralization, Chain Extension, and Temperature. Macromolecules, 2005, 38, 4014-4023.	2.2	79
10	Shape-Memory Polymer Composites. Advances in Polymer Science, 2009, , 41-95.	0.4	78
11	Biorenewable thermosetting copolymer based on soybean oil and eugenol. European Polymer Journal, 2015, 69, 16-28.	2.6	76
12	Kinetic Analysis of Fractal Gel Formation in Waterborne Polyurethane Dispersions Undergoing High Deformation Flows. Macromolecules, 2006, 39, 4144-4151.	2.2	66
13	Rheokinetics of Thermal-Induced Gelation of Waterborne Polyurethane Dispersions. Macromolecules, 2005, 38, 10178-10184.	2.2	64
14	Renewable Polymers Prepared from Vanillin and Its Derivatives. Macromolecular Chemistry and Physics, 2015, 216, 1816-1822.	1.1	61
15	PMMA-g-SOY as a sustainable novel dielectric material. RSC Advances, 2014, 4, 18240.	1.7	59
16	Biodegradation behavior of bacterial-based polyhydroxyalkanoate (PHA) and DDGS composites. Green Chemistry, 2014, 16, 1911-1920.	4.6	57
17	Thermal-induced simultaneous liquid–liquid phase separation and liquid–solid transition in aqueous polyurethane dispersions. Polymer, 2005, 46, 10897-10907.	1.8	28
18	<i>In situ</i> polymerization of bioâ€based thermosetting polyurethane/graphene oxide nanocomposites. Journal of Applied Polymer Science, 2015, 132, .	1.3	28

#	Article	IF	CITATIONS
19	Rheological Investigation of Shear Induced-Mixing and Shear Induced-Demixing for Polystyrene/Poly(vinyl methyl ether) Blend. Macromolecular Chemistry and Physics, 2004, 205, 1222-1230.	1.1	26
20	Novel bio-based composites of polyhydroxyalkanoate (PHA)/distillers dried grains with solubles (DDGS). RSC Advances, 2014, 4, 39802-39808.	1.7	23
21	Dielectric investigation of the molecular dynamics in blends: polymers with similar molecular architecture (TMPC/PC blend). Polymer International, 1995, 36, 269-277.	1.6	22
22	Binary miscible blends of poly(methyl methacrylate)/poly(\hat{i} ±-methyl styrene-co-acrylonitrile): I. Rheological behavior. Journal of Macromolecular Science - Physics, 2002, 41, 255-269.	0.4	22
23	Waterborne Polyurethane Dispersions and Thin Films: Biodegradation and Antimicrobial Behaviors. Molecules, 2021, 26, 961.	1.7	21
24	Broadband Dielectric Spectroscopy for Poly(methyl methacrylate)/Poly(α-methyl) Tj ETQq0 0 0 rgBT /Overlock 1	10 Tf 50 54	42 Td (styrend
25	Dielectric investigation of the molecular dynamics of blends (II): polymers with dissimilar molecular architecture (PS/TMPC blend). Polymer International, 1995, 37, 267-276.	1.6	19
26	Isothermal Crystallization of Poly(É>-caprolactone) in Blend with Poly(styrene-co-acrylonitrile): Influence of Phase Separation Process. Macromolecular Chemistry and Physics, 2004, 205, 1923-1931.	1.1	19
27	Recyclable and Fluorescent Epoxy Polymer Networks from Cardanol Via Solvent-Free Epoxy-Thiol Chemistry. ACS Applied Polymer Materials, 2021, 3, 3082-3092.	2.0	18
28	Novel Internal Emulsifiers for High Biocontent Sustainable Pressure Sensitive Adhesives. ACS Sustainable Chemistry and Engineering, 2021, 9, 147-157.	3.2	18
29	Isothermal Crystallization Kinetics of Poly(É)-caprolactone) with Tetramethyl Polycarbonate and Poly(styrene-co-acrylonitrile) Blends Using Broadband Dielectric Spectroscopy. Macromolecular Chemistry and Physics, 2006, 207, 978-986.	1.1	17
30	Degradable Polyurethane/Soy Protein Shapeâ€Memory Polymer Blends Prepared Via Environmentallyâ€Friendly Aqueous Dispersions. Macromolecular Materials and Engineering, 2012, 297, 1213-1224.	1.7	17
31	Morphology and Properties of Novel Blends Prepared from Simultaneous In Situ Polymerization and Compatibilization of Macrocyclic Carbonates and Maleated Poly(propylene). Macromolecular Chemistry and Physics, 2006, 207, 1233-1243.	1.1	16
32	Semi-interpenetrating polymer networks prepared from in situ cationic polymerization of bio-based tung oil with biodegradable polycaprolactone. RSC Advances, 2014, 4, 6710.	1.7	15
33	Binary miscible blends of poly(methyl methacrylate)/poly(\hat{l} ±-methyl styrene-co-acrylonitrile): II. rheological behavior during phase-separation. Journal of Macromolecular Science - Physics, 2002, 41, 271-287.	0.4	14
34	Isothermal crystallization kinetics in binary miscible blend of poly(É>-caprolactone)/tetramethyl polycarbonate. Journal of Applied Polymer Science, 2007, 103, 3307-3315.	1.3	14
35	Bio-based soft elastomeric capacitor for structural health monitoring applications. Structural Health Monitoring, 2015, 14, 158-167.	4.3	14
36	Rheological Investigation of Shear-Induced Crystallization of Poly(ϵ-Caprolactone). Journal of Macromolecular Science - Physics, 2003, 42, 269-281.	0.4	12

#	Article	IF	CITATIONS
37	Thermal Crossâ€Linking of Poly(Vinyl Methyl Ether). II. Rheological Behavior at the Gel Point. Journal of Macromolecular Science - Physics, 2004, 43, 655-670.	0.4	12
38	Processing and characterization of bioâ€based poly (hydroxyalkanoate)/poly(amide) blends: Improved flexibility and impact resistance of PHAâ€based plastics. Journal of Applied Polymer Science, 2015, 132, .	1.3	12
39	Biorenewable polymer composites from tall oilâ€based polyamide and ligninâ€cellulose fiber. Journal of Applied Polymer Science, 2015, 132, .	1.3	12
40	Effect of Method of Preparation on Molecular Packing of TMPC/PS Blends. Polymer International, 1997, 42, 143-148.	1.6	11
41	Crystallization kinetics of poly(ethylene oxide) from its melt and from mixtures with tetrahydronaphthalene and oligo(ethylene oxide-block-dimethylsiloxane). Journal of Polymer Science, Part B: Polymer Physics, 2004, 42, 820-829.	2.4	10
42	Thermal Crossâ€Linking of Poly(Vinyl Methyl Ether). I. Effect of Crossâ€Linking Process on the Viscoelastic Properties. Journal of Macromolecular Science - Physics, 2004, 43, 471-487.	0.4	10
43	Spinodal Decomposition in Binary Blend of Poly(methyl methacrylate)/Poly(α-methyl) Tj ETQq1 1 0.784314 rgBT / Physics, 2004, 205, 979-986.	Overlock 1	10 Tf 50 507 9
44	Nonisothermal Crystallization Kinetics of Miscible Blends of Polycaprolactone and Crosslinked Carboxylated Polyester Resin. Journal of Macromolecular Science - Physics, 2011, 50, 427-443.	0.4	9
45	Selfâ€Metathesis of 10â€Undecenâ€1â€Ol with Ruâ€Amineâ€Based Complex for Preparing the Soft Segment and Chain Extender of Novel Castor Oilâ€Based Polyurethanes. Macromolecular Symposia, 2016, 368, 30-39.	0.4	8
46	Preparation of Nanoscale Semi-IPNs with an Interconnected Microporous Structure via Cationic Polymerization of Bio-Based Tung Oil in a Homogeneous Solution of Poly(Îμ-caprolactone). ACS Omega, 2020, 5, 9977-9984.	1.6	8
47	Shear-Induced Crystallization and Shear-Induced Dissolution of Poly(ethylene oxide) in Mixtures with Tetrahydronaphthalene and Oligo(dimethyl siloxane-b-ethylene oxide). Macromolecular Chemistry and Physics, 2003, 204, 417-424.	1.1	7
48	Sustainable Polyurethane–Lignin Aqueous Dispersions and Thin Films: Rheological Behavior and Thermomechanical Properties. ACS Applied Polymer Materials, 2020, 2, 5198-5207.	2.0	7
49	Biodegradable poly(butylene adipate- <i>co</i> -terephthalate) (PBAT). ChemistrySelect, 2023, 8, 1127-1156.	0.7	7
50	Binary miscible blends of poly(methyl methacrylate)/poly(α-methyl styrene-co-acrylonitrile). III. Investigation of the phase behavior and morphology during shear flow. Journal of Macromolecular Science - Physics, 2002, 41, 629-646.	0.4	6
51	Binary Miscible Blends of Poly(Methyl Methacrylate)/Poly(α-Methyl Styrene-co-Acrylonitrile). IV. Relationship Between Shear Flow and Viscoelastic Properties. Journal of Macromolecular Science - Physics, 2003, 42, 1209-1223.	0.4	5
52	Dielectric Investigation of Molecular Dynamics of Blends: III. Effect of Molecular Weight in TMPC/PS Blends. Polymer International, 1996, 41, 395-406.	1.6	4
53	Shear influence on the phase behavior of systems containing a homopolymer A and a block copolymer AB. Macromolecular Symposia, 2003, 198, 41-52.	0.4	3
54	Phase Behavior and Morphology of Poly(Methyl Methacrylate)/Poly(αâ€Methyl) Tj ETQq0 0 0 rgBT /Overlock 10 T Science - Reviews in Macromolecular Chemistry and Physics, 2005, 45, 19-58.	f 50 67 Td 2.2	(Styrene― 3

Science - Reviews in Macromolecular Chemistry and Physics, 2005, 45, 19-58.

#	Article	IF	CITATIONS
55	Broadband Dielectric Relaxation Spectroscopy of Functionalized Biobased Castor Oil Copolymer Thermosets. Macromolecular Chemistry and Physics, 2013, 214, 2891-2902.	1.1	3
56	Biodegradable shape-memory polymers and composites. ChemistrySelect, 2023, 8, 2049-2070.	0.7	3
57	Thermal Cross‣inking of Poly(Vinyl Methyl Ether). III. Rheological Kinetics of Cross‣inking Reaction. Journal of Macromolecular Science - Physics, 2004, 43, 819-832.	0.4	2
58	Effects of blending on the molecular dynamics of highly interacting binary polymer blends of poly(methyl methacrylate) and poly[styrene-co-(maleic anhydride)]. Polymer International, 2013, 62, 1659-1666.	1.6	1
59	Bio-based polyhydroxyalkanoates blends and composites. ChemistrySelect, 2023, 8, 1107-1125.	0.7	1
60	Biodegradable polylactic acid (PLA). ChemistrySelect, 2023, 8, 869-894.	0.7	1
61	Crystallization kinetics of poly(ethylene oxide) in mixtures with tetrahydronaphthalene and oligo(dimethyl siloxane-b-ethylene oxide) copolymer. Macromolecular Symposia, 2003, 203, 131-138.	0.4	0
62	Soybean-based polymers and composites. ChemistrySelect, 2023, 8, 849-868.	0.7	0