Sylvia H Duncan

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/4742744/sylvia-h-duncan-publications-by-year.pdf

Version: 2024-04-11

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

83	17,303	54	87
papers	citations	h-index	g-index
87	21,198 ext. citations	5.7	6.65
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
83	Distribution, organization and expression of genes concerned with anaerobic lactate utilization in human intestinal bacteria <i>Microbial Genomics</i> , 2022 , 8,	4.4	3
82	Impact of protein on the composition and metabolism of the human gut microbiota and health. <i>Proceedings of the Nutrition Society</i> , 2021 , 80, 173-185	2.9	5
81	Invasive Plants Are a Valuable Alternate Protein Source and Can Contribute to Meeting Climate Change Targets. <i>Frontiers in Sustainable Food Systems</i> , 2021 , 5,	4.8	2
80	Evaluation of bacterial biomarkers to aid in challenging inflammatory bowel diseases diagnostics and subtype classification. <i>World Journal of Gastrointestinal Pathophysiology</i> , 2020 , 11, 64-77	3.2	2
79	Vitamin Biosynthesis by Human Gut Butyrate-Producing Bacteria and Cross-Feeding in Synthetic Microbial Communities. <i>MBio</i> , 2020 , 11,	7.8	40
78	Relative abundance of the Prevotella genus within the human gut microbiota of elderly volunteers determines the inter-individual responses to dietary supplementation with wheat bran arabinoxylan-oligosaccharides. <i>BMC Microbiology</i> , 2020 , 20, 283	4.5	18
77	Pivotal Roles for pH, Lactate, and Lactate-Utilizing Bacteria in the Stability of a Human Colonic Microbial Ecosystem. <i>MSystems</i> , 2020 , 5,	7.6	22
76	Formate cross-feeding and cooperative metabolic interactions revealed by transcriptomics in co-cultures of acetogenic and amylolytic human colonic bacteria. <i>Environmental Microbiology</i> , 2019 , 21, 259-271	5.2	24
75	Sporulation capability and amylosome conservation among diverse human colonic and rumen isolates of the keystone starch-degrader Ruminococcus bromii. <i>Environmental Microbiology</i> , 2018 , 20, 324-336	5.2	46
74	Mutual Interaction of Phenolic Compounds and Microbiota: Metabolism of Complex Phenolic Apigenin-C- and Kaempferol-O-Derivatives by Human Fecal Samples. <i>Journal of Agricultural and Food Chemistry</i> , 2018 , 66, 485-497	5.7	28
73	Specific substrate-driven changes in human faecal microbiota composition contrast with functional redundancy in short-chain fatty acid production. <i>ISME Journal</i> , 2018 , 12, 610-622	11.9	98
7 2	Chlorogenic acid versus amaranthঙ caffeoylisocitric acid - Gut microbial degradation of caffeic acid derivatives. <i>Food Research International</i> , 2017 , 100, 375-384	7	20
71	Faecalibacterium prausnitzii: from microbiology to diagnostics and prognostics. <i>ISME Journal</i> , 2017 , 11, 841-852	11.9	240
70	Circulating and Tissue-Resident CD4 T Cells With Reactivity to Intestinal Microbiota Are Abundant in Healthy Individuals and Function Is Altered During Inflammation. <i>Gastroenterology</i> , 2017 , 153, 1320	-1337.e	16 ⁵⁰
69	Availability and dose response of phytophenols from a wheat bran rich cereal product in healthy human volunteers. <i>Molecular Nutrition and Food Research</i> , 2017 , 61, 1600202	5.9	16
68	Prebiotic potential of pectin and pectic oligosaccharides to promote anti-inflammatory commensal bacteria in the human colon. <i>FEMS Microbiology Ecology</i> , 2017 , 93,	4.3	117
67	The impact of nutrition on intestinal bacterial communities. <i>Current Opinion in Microbiology</i> , 2017 , 38, 59-65	7.9	78

(2014-2016)

66	Lysozyme activity of the Ruminococcus champanellensis cellulosome. <i>Environmental Microbiology</i> , 2016 , 18, 5112-5122	5.2	12
65	Faecalibacterium prausnitzii A2-165 has a high capacity to induce IL-10 in human and murine dendritic cells and modulates T cell responses. <i>Scientific Reports</i> , 2016 , 6, 18507	4.9	119
64	Enzymatic profiling of cellulosomal enzymes from the human gut bacterium, Ruminococcus champanellensis, reveals a fine-tuned system for cohesin-dockerin recognition. <i>Environmental Microbiology</i> , 2016 , 18, 542-56	5.2	43
63	Modulation of the human gut microbiota by dietary fibres occurs at the species level. <i>BMC Biology</i> , 2016 , 14, 3	7.3	214
62	Objections to the proposed reclassification of Eubacterium rectale as Agathobacter rectalis. <i>International Journal of Systematic and Evolutionary Microbiology</i> , 2016 , 66, 2106	2.2	7
61	Polysaccharide utilization loci and nutritional specialization in a dominant group of butyrate-producing human colonic. <i>Microbial Genomics</i> , 2016 , 2, e000043	4.4	98
60	Wheat bran promotes enrichment within the human colonic microbiota of butyrate-producing bacteria that release ferulic acid. <i>Environmental Microbiology</i> , 2016 , 18, 2214-25	5.2	86
59	Ruminococcal cellulosome systems from rumen to human. <i>Environmental Microbiology</i> , 2015 , 17, 3407-2	2 6 .2	67
58	Unique Organization of Extracellular Amylases into Amylosomes in the Resistant Starch-Utilizing Human Colonic Firmicutes Bacterium Ruminococcus bromii. <i>MBio</i> , 2015 , 6, e01058-15	7.8	99
57	Enhanced butyrate formation by cross-feeding between Faecalibacterium prausnitzii and Bifidobacterium adolescentis. <i>FEMS Microbiology Letters</i> , 2015 , 362,	2.9	167
56	Mucosa-associated Faecalibacterium prausnitzii phylotype richness is reduced in patients with inflammatory bowel disease. <i>Applied and Environmental Microbiology</i> , 2015 , 81, 7582-92	4.8	66
55	Modelling the emergent dynamics and major metabolites of the human colonic microbiota. <i>Environmental Microbiology</i> , 2015 , 17, 1615-30	5.2	86
54	Faecalibacterium 2015 , 1-6		
53	Roseburia 2015 , 1-7		2
52	Faecalibacterium prausnitzii Strain HTF-F and Its Extracellular Polymeric Matrix Attenuate Clinical Parameters in DSS-Induced Colitis. <i>PLoS ONE</i> , 2015 , 10, e0123013	3.7	74
51	Phylogeny, culturing, and metagenomics of the human gut microbiota. <i>Trends in Microbiology</i> , 2014 , 22, 267-74	12.4	148
50	Phylogenetic distribution of three pathways for propionate production within the human gut microbiota. <i>ISME Journal</i> , 2014 , 8, 1323-35	11.9	561
49	Mucosa-associated Faecalibacterium prausnitzii and Escherichia coli co-abundance can distinguish Irritable Bowel Syndrome and Inflammatory Bowel Disease phenotypes. <i>International Journal of Medical Microbiology</i> , 2014 , 304, 464-75	3.7	83

48	Impact of diet and individual variation on intestinal microbiota composition and fermentation products in obese men. <i>ISME Journal</i> , 2014 , 8, 2218-30	11.9	356
47	The impact of different DNA extraction kits and laboratories upon the assessment of human gut microbiota composition by 16S rRNA gene sequencing. <i>PLoS ONE</i> , 2014 , 9, e88982	3.7	177
46	Rumen cellulosomics: divergent fiber-degrading strategies revealed by comparative genome-wide analysis of six ruminococcal strains. <i>PLoS ONE</i> , 2014 , 9, e99221	3.7	55
45	Prebiotic stimulation of human colonic butyrate-producing bacteria and bifidobacteria, in vitro. <i>FEMS Microbiology Ecology</i> , 2014 , 87, 30-40	4.3	249
44	Advanced analytical methodologies to study the microbial metabolome of the human gut. <i>TrAC</i> - <i>Trends in Analytical Chemistry</i> , 2013 , 52, 54-60	14.6	9
43	The influence of diet on the gut microbiota. <i>Pharmacological Research</i> , 2013 , 69, 52-60	10.2	594
42	MS-based Methodologies to Study the Microbial Metabolome 2013 , 221-243		
41	The gut microbial metabolome: modulation of cancer risk in obese individuals. <i>Proceedings of the Nutrition Society</i> , 2013 , 72, 178-88	2.9	24
40	Probiotics and prebiotics and health in ageing populations. <i>Maturitas</i> , 2013 , 75, 44-50	5	132
39	Major phenylpropanoid-derived metabolites in the human gut can arise from microbial fermentation of protein. <i>Molecular Nutrition and Food Research</i> , 2013 , 57, 523-35	5.9	172
38	Some are more equal than others: the role of "keystone" species in the degradation of recalcitrant substrates. <i>Gut Microbes</i> , 2013 , 4, 236-40	8.8	98
37	The role of the gut microbiota in nutrition and health. <i>Nature Reviews Gastroenterology and Hepatology</i> , 2012 , 9, 577-89	24.2	1119
36	The gut anaerobe Faecalibacterium prausnitzii uses an extracellular electron shuttle to grow at oxic-anoxic interphases. <i>ISME Journal</i> , 2012 , 6, 1578-85	11.9	201
35	Anaerostipes hadrus comb. nov., a dominant species within the human colonic microbiota; reclassification of Eubacterium hadrum Moore etlal. 1976. <i>Anaerobe</i> , 2012 , 18, 523-9	2.8	54
34	Microbial degradation of complex carbohydrates in the gut. Gut Microbes, 2012, 3, 289-306	8.8	1085
33	Ruminococcus bromii is a keystone species for the degradation of resistant starch in the human colon. <i>ISME Journal</i> , 2012 , 6, 1535-43	11.9	551
32	Targeted restoration of the intestinal microbiota with a simple, defined bacteriotherapy resolves relapsing Clostridium difficile disease in mice. <i>PLoS Pathogens</i> , 2012 , 8, e1002995	7.6	403
31	Cultured representatives of two major phylogroups of human colonic Faecalibacterium prausnitzii can utilize pectin, uronic acids, and host-derived substrates for growth. <i>Applied and Environmental Microbiology</i> 2012 78 420-8	4.8	247

(2004-2011)

30	Kinetic modelling of lactate utilization and butyrate production by key human colonic bacterial species. <i>FEMS Microbiology Ecology</i> , 2011 , 76, 615-24	4.3	87
29	Rates of production and utilization of lactate by microbial communities from the human colon. <i>FEMS Microbiology Ecology</i> , 2011 , 77, 107-19	4.3	53
28	Dominant and diet-responsive groups of bacteria within the human colonic microbiota. <i>ISME Journal</i> , 2011 , 5, 220-30	11.9	1081
27	High-protein, reduced-carbohydrate weight-loss diets promote metabolite profiles likely to be detrimental to colonic health. <i>American Journal of Clinical Nutrition</i> , 2011 , 93, 1062-72	7	456
26	Microorganisms in the human gut: Diversity and function. <i>Biochemist</i> , 2011 , 33, 4-9	0.5	
25	Translocation of Crohnld disease Escherichia coli across M-cells: contrasting effects of soluble plant fibres and emulsifiers. <i>Gut</i> , 2010 , 59, 1331-9	19.2	172
24	Lactate has the potential to promote hydrogen sulphide formation in the human colon. <i>FEMS Microbiology Letters</i> , 2009 , 299, 128-34	2.9	90
23	The role of pH in determining the species composition of the human colonic microbiota. <i>Environmental Microbiology</i> , 2009 , 11, 2112-22	5.2	416
22	Anti-inflammatory implications of the microbial transformation of dietary phenolic compounds. <i>Nutrition and Cancer</i> , 2008 , 60, 636-42	2.8	54
21	Proposal of a neotype strain (A1-86) for Eubacterium rectale. Request for an opinion. <i>International Journal of Systematic and Evolutionary Microbiology</i> , 2008 , 58, 1735-6	2.2	44
20	Interactions and competition within the microbial community of the human colon: links between diet and health. <i>Environmental Microbiology</i> , 2007 , 9, 1101-11	5.2	430
19	Reduced dietary intake of carbohydrates by obese subjects results in decreased concentrations of butyrate and butyrate-producing bacteria in feces. <i>Applied and Environmental Microbiology</i> , 2007 , 73, 1073-8	4.8	624
18	Impact of pH on lactate formation and utilization by human fecal microbial communities. <i>Applied and Environmental Microbiology</i> , 2007 , 73, 6526-33	4.8	136
17	Proposal of Roseburia faecis sp. nov., Roseburia hominis sp. nov. and Roseburia inulinivorans sp. nov., based on isolates from human faeces. <i>International Journal of Systematic and Evolutionary Microbiology</i> , 2006 , 56, 2437-2441	2.2	142
16	Two routes of metabolic cross-feeding between Bifidobacterium adolescentis and butyrate-producing anaerobes from the human gut. <i>Applied and Environmental Microbiology</i> , 2006 , 72, 3593-9	4.8	541
15	pH and peptide supply can radically alter bacterial populations and short-chain fatty acid ratios within microbial communities from the human colon. <i>Applied and Environmental Microbiology</i> , 2005 , 71, 3692-700	4.8	485
14	Lactate-utilizing bacteria, isolated from human feces, that produce butyrate as a major fermentation product. <i>Applied and Environmental Microbiology</i> , 2004 , 70, 5810-7	4.8	673
13	Restricted distribution of the butyrate kinase pathway among butyrate-producing bacteria from the human colon. <i>Journal of Bacteriology</i> , 2004 , 186, 2099-106	3.5	295

12	continuous-flow simulations of the rumen and colon and in calves. <i>British Journal of Nutrition</i> , 2004 , 91, 749-55	3.6	21
11	Contribution of acetate to butyrate formation by human faecal bacteria. <i>British Journal of Nutrition</i> , 2004 , 91, 915-23	3.6	271
10	Effects of alternative dietary substrates on competition between human colonic bacteria in an anaerobic fermentor system. <i>Applied and Environmental Microbiology</i> , 2003 , 69, 1136-42	4.8	141
9	Anaerostipes caccae gen. nov., sp. nov., a new saccharolytic, acetate-utilising, butyrate-producing bacterium from human faeces. <i>Systematic and Applied Microbiology</i> , 2002 , 25, 46-51	4.2	101
8	The microbiology of butyrate formation in the human colon. FEMS Microbiology Letters, 2002, 217, 133-	· 9 2.9	911
7	Acetate utilization and butyryl coenzyme A (CoA):acetate-CoA transferase in butyrate-producing bacteria from the human large intestine. <i>Applied and Environmental Microbiology</i> , 2002 , 68, 5186-90	4.8	407
6	Oxalobacter formigenes and its potential role in human health. <i>Applied and Environmental Microbiology</i> , 2002 , 68, 3841-7	4.8	141
5	Dietary effects on the microbiological safety of food. <i>Proceedings of the Nutrition Society</i> , 2001 , 60, 247	'-5 5)	7
4	Phylogenetic relationships of butyrate-producing bacteria from the human gut. <i>Applied and Environmental Microbiology</i> , 2000 , 66, 1654-61	4.8	653
3	High throughput method development and optimised production of leaf protein concentrates with potential to support the agri-industry. <i>Journal of Food Measurement and Characterization</i> ,1	2.8	Ο
2	Dietary fibre complexity and its influence on functional groups of the human gut microbiota. <i>Proceedings of the Nutrition Society</i> ,1-27	2.9	3
1	Higher total faecal short chain fatty concentrations correlate with increasing proportions of butyrate and decreasing proportions of branched chain fatty acids across multiple human studies1-23		1