Alfred Baghramian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4742681/publications.pdf

Version: 2024-02-01

840776 794594 38 622 11 19 citations g-index h-index papers 38 38 38 606 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Load frequency control in the presence of simultaneous cyber-attack and participation of demand response program. Transactions of the Institute of Measurement and Control, 2022, 44, 1993-2011.	1.7	4
2	Accurate demand response participation in regulating power system frequency by Modified Active Disturbance Rejection Control. Mathematical Methods in the Applied Sciences, 2022, 45, 7685-7699.	2.3	1
3	An optimized fuzzy sliding based active disturbance rejection control for simultaneous cyberâ€attack tolerant and demand response participation program. International Transactions on Electrical Energy Systems, 2021, 31, e13206.	1.9	6
4	Analysis and Modeling of a New Coupled-Inductor Buck–Boost DC–DC Converter for Renewable Energy Applications. IEEE Transactions on Power Electronics, 2020, 35, 8088-8101.	7.9	40
5	A novel self-tuning type-2 fuzzy maximum power point tracking technique for efficiency enhancement of fuel cell based battery chargers. International Journal of Hydrogen Energy, 2020, 45, 23275-23293.	7.1	20
6	Partly isolated threeâ€port DC–DC converter based on impedance network. IET Power Electronics, 2020, 13, 2175-2193.	2.1	7
7	A Modified SEPIC-Based High Step-Up DC–DC Converter With Quasi-Resonant Operation for Renewable Energy Applications. IEEE Transactions on Industrial Electronics, 2019, 66, 3539-3549.	7.9	92
8	Reducedâ€order small signal modelling of highâ€order high stepâ€up converters with clamp circuit and voltage multiplier cell. IET Power Electronics, 2019, 12, 3539-3554.	2.1	11
9	A New High-Step-Up DC-DC Converter using Three-Windings Transformer and Soft-Switching for use in Photovoltaic Systems. , 2019, , .		8
10	Analysis, modeling, and implementation of a new transformerless semiâ€quadratic Buck–boost DC/DC converter. International Journal of Circuit Theory and Applications, 2019, 47, 862-883.	2.0	27
11	A Two-Stage Stochastic Framework for an Electricity Retailer Considering Demand Response and Uncertainties Using a Hybrid Clustering Technique. Iranian Journal of Science and Technology - Transactions of Electrical Engineering, 2019, 43, 541-558.	2.3	8
12	Implementation of hybrid electric vehicle energy management system for two input power sources. Journal of Energy Storage, 2018, 17, 423-440.	8.1	24
13	A new high-gain coupled-inductor SEPIC converter for a microgrid system. , 2017, , .		4
14	Bidirectional isolated î"-source DC-DC converter. , 2017, , .		2
15	Singleâ€switch high stepâ€up converter based on coupled inductor and switched capacitor techniques with quasiâ€resonant operation. IET Power Electronics, 2017, 10, 240-250.	2.1	94
16	A family of single phase converters with reduced number of components and leakage current elimination in photovoltaic systems. , 2016, , .		0
17	Galvanically isolated high gain Yâ€source DC–DC converters for dispersed power generation. IET Power Electronics, 2016, 9, 1192-1203.	2.1	77
18	Optimal power scheduling of thermal units considering emission constraint for GENCOs' profit maximization. International Journal of Electrical Power and Energy Systems, 2016, 82, 124-135.	5.5	31

#	Article	IF	CITATIONS
19	A novel single switch high gain DC-DC converter employing coupled inductor and diode capacitor. , 2016, , .		6
20	An ICA based approach for solving profit based unit commitment problem market. Applied Soft Computing Journal, 2016, 38, 487-500.	7.2	36
21	Analysis and Development of a n Improved Y - source Boost DC - DC Converter. International Journal on Electrical Engineering and Informatics, 2016, 8, 200-219.	0.5	1
22	High voltage gain Y-source based isolated DC-DC converter with continuous input current. , 2015, , .		7
23	Novel T-Z source inverter with high voltage gain and reduced transformer turn ratio. , 2015, , .		6
24	A novel high voltage gain DC-DC converter with reduced components voltage stress. , 2015, , .		2
25	Improved Y-source inverter for distributed power generation. , 2015, , .		8
26	Discussion and Comments on "L-Z Source Inverter". IEEE Transactions on Power Electronics, 2015, 30, 7308-7308.	7.9	8
27	A novel heuristic method for wind farm power prediction: A case study. International Journal of Electrical Power and Energy Systems, 2014, 63, 962-970.	5. 5	31
28	Switched inductor Γ source inverter. , 2014, , .		3
29	Novel high step up DC/DC converters With reduced switch voltage stress. , 2014, , .		6
30	Enhanced self lift ZETA converter for negative-to-positive voltage conversion. , 2013, , .		1
31	Fuzzy Controller of luo converter for controlling of DC motors speed. , 2013, , .		3
32	Mitigation of deep voltage sag utilizing switched autotransformer with RBHVC. , 2011, , .		0
33	Interactions within heterogeneous systems of uncontrolled rectifiers for aircraft electrical power systems. IET Electrical Systems in Transportation, 2011, 1, 49-60.	2.4	6
34	Mitigation of Voltage Swell by Switched Autotransformer with Random Hysteresis Voltage Control. , 2011, , .		0
35	Voltage Sag Mitigation Utilizing Switched Autotransformer with Random Hysteresis Voltage Control. , 2011, , .		0
36	Average, dynamic model of multi-pulse rectifiers. , 2010, , .		1

#	Article	lF	CITATIONS
37	Averaged value analysis of 18-Pulse rectifiers for aerospace applications. , 2009, , .		3
38	Approximate, average, dynamic models of uncontrolled rectifiers for aircraft applications. IET Power Electronics, 2009, 2, 398-409.	2.1	38