Ning Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4742509/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Formation of ZnO nanostructures by a simple way of thermal evaporation. Applied Physics Letters, 2002, 81, 757-759.	1.5	925
2	Superconductivity in 4 Angstrom Single-Walled Carbon Nanotubes. Science, 2001, 292, 2462-2465.	6.0	778
3	Thermochromic VO2 for Energy-Efficient Smart Windows. Joule, 2018, 2, 1707-1746.	11.7	536
4	Oriented Silicon Carbide Nanowires: Synthesis and Field Emission Properties. Advanced Materials, 2000, 12, 1186-1190.	11.1	523
5	Silicon nanowires prepared by laser ablation at high temperature. Applied Physics Letters, 1998, 72, 1835-1837.	1.5	519
6	Formation mechanism of TiO2 nanotubes. Applied Physics Letters, 2003, 82, 281-283.	1.5	505
7	Growth of nanowires. Materials Science and Engineering Reports, 2008, 60, 1-51.	14.8	489
8	High-quality sandwiched black phosphorus heterostructure and its quantum oscillations. Nature Communications, 2015, 6, 7315.	5.8	423
9	Single-walled 4 Ã carbon nanotube arrays. Nature, 2000, 408, 50-51.	13.7	383
10	Atomically Dispersed Pd on Nanodiamond/Graphene Hybrid for Selective Hydrogenation of Acetylene. Journal of the American Chemical Society, 2018, 140, 13142-13146.	6.6	342
11	Two-dimensional quasicrystal with eightfold rotational symmetry. Physical Review Letters, 1987, 59, 1010-1013.	2.9	309
12	Nucleation and growth of Si nanowires from silicon oxide. Physical Review B, 1998, 58, R16024-R16026.	1.1	309
13	Polarized Absorption Spectra of Single-Walled 4 Ã Carbon Nanotubes Aligned in Channels of anAlPO4â^'5Single Crystal. Physical Review Letters, 2001, 87, 127401.	2.9	285
14	Si nanowires grown from silicon oxide. Chemical Physics Letters, 1999, 299, 237-242.	1.2	273
15	Enhanced photocatalytic performance of TiO2-ZnO hybrid nanostructures. Scientific Reports, 2014, 4, 4181.	1.6	248
16	Achieving Ultrahigh Carrier Mobility in Two-Dimensional Hole Gas of Black Phosphorus. Nano Letters, 2016, 16, 7768-7773.	4.5	242
17	Anchoring Cu1 species over nanodiamond-graphene for semi-hydrogenation of acetylene. Nature Communications, 2019, 10, 4431.	5.8	224
18	Subnanometer Bimetallic Platinum–Zinc Clusters in Zeolites for Propane Dehydrogenation. Angewandte Chemie - International Edition, 2020, 59, 19450-19459.	7.2	221

#	Article	IF	CITATIONS
19	Growth and Photocatalytic Activity of Dendrite-like ZnO@Ag Heterostructure Nanocrystals. Crystal Growth and Design, 2009, 9, 3278-3285.	1.4	206
20	Laser Ablation Synthesis and Optical Characterization of Silicon Carbide Nanowires. Journal of the American Ceramic Society, 2000, 83, 3228-3230.	1.9	203
21	Oxide-Assisted Semiconductor Nanowire Growth. MRS Bulletin, 1999, 24, 36-42.	1.7	198
22	SiO2-enhanced synthesis of Si nanowires by laser ablation. Applied Physics Letters, 1998, 73, 3902-3904.	1.5	196
23	Synthesis of Large Areas of Highly Oriented, Very Long Silicon Nanowires. Advanced Materials, 2000, 12, 1343-1345.	11.1	194
24	Probing the electron states and metal-insulator transition mechanisms in molybdenum disulphide vertical heterostructures. Nature Communications, 2015, 6, 6088.	5.8	181
25	The van der Waals epitaxy of Bi ₂ Se ₃ on the vicinal Si(111) surface: an approach for preparing high-quality thin films of a topological insulator. New Journal of Physics, 2010, 12, 103038.	1.2	180
26	Oxygenâ€Assisted Charge Transfer Between ZnO Quantum Dots and Graphene. Small, 2013, 9, 3031-3036.	5.2	174
27	Dense Network of One-Dimensional Midgap Metallic Modes in Monolayer <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi>MoSe</mml:mi></mml:mrow><mml:mrow> Their Spatial Undulations. Physical Review Letters. 2014. 113. 066105.</mml:mrow></mml:msub></mml:mrow></mml:math 	<m#t:mn></m#t:mn>	2 <del 172 2
28	Germanium nanowires sheathed with an oxide layer. Physical Review B, 2000, 61, 4518-4521.	1.1	171
29	β-SiC nanorods synthesized by hot filament chemical vapor deposition. Applied Physics Letters, 1999, 74, 3942-3944.	1.5	169
30	A General Synthetic Route to III-V Compound Semiconductor Nanowires. Advanced Materials, 2001, 13, 591-594.	11.1	158
31	Tin-Assisted Fully Exposed Platinum Clusters Stabilized on Defect-Rich Graphene for Dehydrogenation Reaction. ACS Catalysis, 2019, 9, 5998-6005.	5.5	150
32	Free-standing Single Crystal Silicon Nanoribbons. Journal of the American Chemical Society, 2001, 123, 11095-11096.	6.6	148
33	Semiconductor nanowires from oxides. Journal of Materials Research, 1999, 14, 4503-4507.	1.2	145
34	Electronic and Mechanical Coupling in Bent ZnO Nanowires. Advanced Materials, 2009, 21, 4937-4941.	11.1	137
35	Bulk-quantity GaN nanowires synthesized from hot filament chemical vapor deposition. Chemical Physics Letters, 2000, 327, 263-270.	1.2	133
36	3D heterostructured pure and N-Doped Ni3S2/VS2 nanosheets for high efficient overall water splitting. Electrochimica Acta, 2018, 269, 55-61.	2.6	132

#	Article	IF	CITATIONS
37	Semiconductor nanowires: synthesis, structure and properties. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2000, 286, 16-23.	2.6	128
38	A Nucleation Site and Mechanism Leading to Epitaxial Growth of Diamond Films. Science, 2000, 287, 104-106.	6.0	125
39	Ultrarapid Sonochemical Synthesis of ZnO Hierarchical Structures: From Fundamental Research to High Efficiencies up to 6.42% for Quasi-Solid Dye-Sensitized Solar Cells. Chemistry of Materials, 2013, 25, 1000-1012.	3.2	124
40	Fabrication and magnetic properties of ultrathin Fe nanowire arrays. Applied Physics Letters, 2003, 83, 3341-3343.	1.5	122
41	The Size-Dependent Growth Direction of ZnSe Nanowires. Advanced Materials, 2006, 18, 109-114.	11.1	116
42	Thin Î ² -SiC nanorods and their field emission properties. Chemical Physics Letters, 2000, 318, 58-62.	1.2	114
43	CdSe Nano-tetrapods:  Controllable Synthesis, Structure Analysis, and Electronic and Optical Properties. Chemistry of Materials, 2005, 17, 5263-5267.	3.2	114
44	Temperature Dependence of Si Nanowire Morphology. Advanced Materials, 2001, 13, 317-320.	11.1	113
45	Regulating coordination number in atomically dispersed Pt species on defect-rich graphene for n-butane dehydrogenation reaction. Nature Communications, 2021, 12, 2664.	5.8	111
46	Transmission electron microscopy evidence of the defect structure in Si nanowires synthesized by laser ablation. Chemical Physics Letters, 1998, 283, 368-372.	1.2	110
47	One-dimensional growth mechanism of crystalline silicon nanowires. Journal of Crystal Growth, 1999, 197, 136-140.	0.7	104
48	ZnSe nanowires epitaxially grown on GaP(111) substrates by molecular-beam epitaxy. Applied Physics Letters, 2003, 83, 2665-2667.	1.5	104
49	Universal low-temperature Ohmic contacts for quantum transport in transition metal dichalcogenides. 2D Materials, 2016, 3, 021007.	2.0	102
50	Growth Direction and Cross-Sectional Study of Silicon Nanowires. Advanced Materials, 2003, 15, 607-609.	11.1	99
51	Isolation and Characterization of Few-Layer Manganese Thiophosphite. ACS Nano, 2017, 11, 11330-11336.	7.3	98
52	Morphology of Si nanowires synthesized by high-temperature laser ablation. Journal of Applied Physics, 1999, 85, 7981-7983.	1.1	97
53	Diameter modification of silicon nanowires by ambient gas. Applied Physics Letters, 1999, 75, 1842-1844.	1.5	93
54	Recent advances in fabrication strategies, phase transition modulation, and advanced applications of vanadium dioxide. Applied Physics Reviews, 2019, 6, .	5.5	93

#	Article	IF	CITATIONS
55	Direct electrochemistry and electrocatalysis of hemoglobin immobilized in TiO2 nanotube films. Talanta, 2008, 74, 1414-1419.	2.9	92
56	Twin Defect Derived Growth of Atomically Thin MoS ₂ Dendrites. ACS Nano, 2018, 12, 635-643.	7.3	92
57	Electrical and Photoresponse Properties of an Intramolecular p-n Homojunction in Single Phosphorus-Doped ZnO Nanowires. Nano Letters, 2009, 9, 2513-2518.	4.5	91
58	Deep Eutectic Solvent-Assisted Preparation of Nitrogen/Chloride-Doped Carbon Dots for Intracellular Biological Sensing and Live Cell Imaging. ACS Applied Materials & Interfaces, 2018, 10, 7901-7909.	4.0	91
59	Vanadium disulfide decorated graphitic carbon nitride for super-efficient solar-driven hydrogen evolution. Applied Catalysis B: Environmental, 2018, 237, 295-301.	10.8	89
60	Coaxial Three-Layer Nanocables Synthesized by Combining Laser Ablation and Thermal Evaporation. Advanced Materials, 2000, 12, 1927-1930.	11.1	86
61	Bulk-quantity Si nanowires synthesized by SiO sublimation. Journal of Crystal Growth, 2000, 212, 115-118.	0.7	86
62	Oxide-assisted growth and optical characterization of gallium-arsenide nanowires. Applied Physics Letters, 2001, 78, 3304-3306.	1.5	84
63	Even–odd layer-dependent magnetotransport of high-mobility Q-valley electrons in transition metal disulfides. Nature Communications, 2016, 7, 12955.	5.8	82
64	In situ TEM examinations of octacalcium phosphate to hydroxyapatite transformation. Journal of Crystal Growth, 2006, 289, 339-344.	0.7	81
65	Molecular-beam epitaxy of monolayer MoSe ₂ : growth characteristics and domain boundary formation. New Journal of Physics, 2015, 17, 053023.	1.2	80
66	Synthesis and microstructure of gallium phosphide nanowires. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2001, 19, 1115.	1.6	79
67	Hydrothermal synthesis of oriented ZnO nanobelts and their temperature dependent photoluminescence. Chemical Physics Letters, 2004, 393, 17-21.	1.2	79
68	Field Induced Structural Transition in Mesocrystallites. Physical Review Letters, 1999, 82, 4248-4251.	2.9	77
69	Intrinsic valley Hall transport in atomically thin MoS2. Nature Communications, 2019, 10, 611.	5.8	77
70	Palladium Nanoparticles Embedded in the Inner Surfaces of Carbon Nanotubes: Synthesis, Catalytic Activity, and Sinter Resistance. Angewandte Chemie - International Edition, 2014, 53, 12634-12638.	7.2	76
71	High-Quality ZnO Nanowire Arrays Directly Fabricated from Photoresists. ACS Nano, 2009, 3, 53-58.	7.3	74
72	Piezotronic Effects on the Optical Properties of ZnO Nanowires. Nano Letters, 2012, 12, 5802-5807.	4.5	73

#	Article	IF	CITATIONS
73	Control of growth orientation of GaN nanowires. Chemical Physics Letters, 2002, 359, 241-245.	1.2	72
74	Solidâ€State Synthesis of ZnO Nanostructures for Quasiâ€Solid Dyeâ€Sensitized Solar Cells with High Efficiencies up to 6.46%. Advanced Materials, 2013, 25, 4413-4419.	11.1	72
75	Few-Atom Pt Ensembles Enable Efficient Catalytic Cyclohexane Dehydrogenation for Hydrogen Production. Journal of the American Chemical Society, 2022, 144, 3535-3542.	6.6	72
76	Ti1–graphene single-atom material for improved energy level alignment in perovskite solar cells. Nature Energy, 2021, 6, 1154-1163.	19.8	72
77	Germanium dioxide whiskers synthesized by laser ablation. Applied Physics Letters, 1999, 74, 3824-3826.	1.5	70
78	Smallest diameter carbon nanotubes. Applied Physics Letters, 2000, 77, 2831-2833.	1.5	68
79	Interaction effects and superconductivity signatures in twisted double-bilayer WSe ₂ . Nanoscale Horizons, 2020, 5, 1309-1316.	4.1	68
80	Normally-Off LPCVD-SiN <italic> _x </italic> /GaN MIS-FET With Crystalline Oxidation Interlayer. IEEE Electron Device Letters, 2017, 38, 929-932.	2.2	67
81	Synthesis and characterization of amorphous carbon nanowires. Applied Physics Letters, 1999, 75, 2921-2923.	1.5	66
82	Template-Free Electrochemical Synthesis of Single-Crystal CuTe Nanoribbons. Crystal Growth and Design, 2008, 8, 1789-1791.	1.4	65
83	Straight β-SiC nanorods synthesized by using C–Si–SiO2. Applied Physics Letters, 2000, 76, 294-296.	1.5	63
84	Electron-Beam-Induced Elastic–Plastic Transition in Si Nanowires. Nano Letters, 2012, 12, 2379-2385.	4.5	63
85	Enhanced Photothermal Effect in Si Nanowires. Nano Letters, 2003, 3, 475-477.	4.5	61
86	An Ultralight Graphene Honeycomb Sandwich for Stretchable Lightâ€Emitting Displays. Advanced Functional Materials, 2018, 28, 1707043.	7.8	61
87	Highly efficient and stable photoluminescence from silicon nanowires coated with SiC. Chemical Physics Letters, 2000, 332, 215-218.	1.2	59
88	Superconducting characteristics of 4-â,,« carbon nanotube–zeolite composite. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 7299-7303.	3.3	58
89	Interlaced W ₁₈ O ₄₉ nanofibers as a superior catalyst for the counter electrode of highly efficient dye-sensitized solar cells. Journal of Materials Chemistry A, 2014, 2, 4347-4354.	5.2	58
90	Structure and migration of (112) step on (111) twin boundaries in nanocrystalline copper. Journal of Applied Physics, 2008, 104, .	1.1	57

#	Article	IF	CITATIONS
91	Effect of annealing on the giant Hall effect. Physical Review B, 1996, 53, 14032-14035.	1.1	56
92	Nucleation and growth of well-aligned, uniform-sized carbon nanotubes by microwave plasma chemical vapor depositon. Applied Physics Letters, 2001, 78, 4028-4030.	1.5	54
93	High reactivity of silicon suboxide clusters. Physical Review B, 2001, 64, .	1.1	54
94	van der Waals Epitaxial Growth of Atomically Thin Bi ₂ Se ₃ and Thickness-Dependent Topological Phase Transition. Nano Letters, 2015, 15, 2645-2651.	4.5	54
95	Growth and emission properties of β-SiC nanorods. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2000, 286, 119-124.	2.6	52
96	Controllable Fabrication of Three-Dimensional Radial ZnO Nanowire/Silicon Microrod Hybrid Architectures. Crystal Growth and Design, 2011, 11, 147-153.	1.4	52
97	Cost-effective and morphology-controllable niobium diselenides for highly efficient counter electrodes of dye-sensitized solar cells. Journal of Materials Chemistry A, 2013, 1, 11874.	5.2	52
98	Mechanism of oxide-assisted nucleation and growth of silicon nanostructures. Materials Science and Engineering C, 2001, 16, 31-35.	3.8	51
99	Cooperative Sites in Fully Exposed Pd Clusters for Low-Temperature Direct Dehydrogenation Reaction. ACS Catalysis, 2021, 11, 11469-11477.	5.5	51
100	Tuning the selectivity of catalytic nitriles hydrogenation by structure regulation in atomically dispersed Pd catalysts. Nature Communications, 2021, 12, 6194.	5.8	51
101	Defect-rich graphene stabilized atomically dispersed Cu3 clusters with enhanced oxidase-like activity for antibacterial applications. Applied Catalysis B: Environmental, 2022, 301, 120826.	10.8	51
102	Bulk-quantity Si nanosphere chains prepared from semi-infinite length Si nanowires. Journal of Applied Physics, 2001, 89, 727-731.	1.1	49
103	Optimizing nanosheet-based ZnO hierarchical structure through ultrasonic-assisted precipitation for remarkable photovoltaic enhancement in quasi-solid dye-sensitized solar cells. Journal of Materials Chemistry, 2012, 22, 13097.	6.7	48
104	Reduction of nitrobenzene catalyzed by carbon materials. Chinese Journal of Catalysis, 2014, 35, 914-921.	6.9	48
105	Lattice reconstruction induced multiple ultra-flat bands in twisted bilayer WSe2. Nature Communications, 2021, 12, 5601.	5.8	48
106	Transition between wurtzite and zinc-blende GaN: An effect of deposition condition of molecular-beam epitaxy. Applied Physics Letters, 2006, 89, 151921.	1.5	47
107	Micropumps Based on the Enhanced Electroosmotic Effect of Aluminum Oxide Membranes. Advanced Materials, 2007, 19, 4234-4237.	11.1	47
108	Template-Free Electrodeposition of One-Dimensional Nanostructures of Tellurium. Crystal Growth and Design, 2009, 9, 663-666.	1.4	47

#	Article	IF	CITATIONS
109	Graphene Magnetoresistance Device in van der Pauw Geometry. Nano Letters, 2011, 11, 2973-2977.	4.5	45
110	Shape-Dependent Defect Structures of Monolayer MoS ₂ Crystals Grown by Chemical Vapor Deposition. ACS Applied Materials & amp; Interfaces, 2017, 9, 763-770.	4.0	45
111	Metal Silicide/Silicon Nanowires from Metal Vapor Vacuum Arc Implantation. Advanced Materials, 2002, 14, 218-221.	11.1	44
112	A Magnetically Separable Pd Singleâ€Atom Catalyst for Efficient Selective Hydrogenation of Phenylacetylene. Advanced Materials, 2022, 34, e2110455.	11.1	44
113	Mono-sized and single-walled 4 Ã carbon nanotubes. Chemical Physics Letters, 2001, 339, 47-52.	1.2	43
114	Superconductivity in Bundles of Double-Wall Carbon Nanotubes. Scientific Reports, 2012, 2, 625.	1.6	43
115	Si nanowires synthesized by laser ablation of mixed SiC and SiO2 powders. Chemical Physics Letters, 1999, 314, 16-20.	1.2	42
116	Structural characterization of mesoporous silica nanowire arrays grown in porous alumina templates. Chemical Physics Letters, 2005, 409, 172-176.	1.2	42
117	Temperature-Dependent Growth Direction of Ultrathin ZnSe Nanowires. Small, 2007, 3, 111-115.	5.2	42
118	Superlattices of Bi2Se3/In2Se3: Growth characteristics and structural properties. Applied Physics Letters, 2011, 99, .	1.5	42
119	Effects of Hexagonal Boron Nitride Encapsulation on the Electronic Structure of Few-Layer MoS ₂ . Journal of Physical Chemistry C, 2019, 123, 14797-14802.	1.5	42
120	Heteroepitaxial nucleation of diamond on Si(100) via double bias-assisted hot filament chemical vapor deposition. Diamond and Related Materials, 2000, 9, 134-139.	1.8	41
121	Carbon Nanotube Arrays Prepared by MWCVD. Journal of Physical Chemistry B, 2001, 105, 11395-11398.	1.2	40
122	ZnO hierarchical structures for efficient quasi-solid dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2011, 13, 10631.	1.3	39
123	A self-entanglement mechanism for continuous pulling of carbon nanotube yarns. Carbon, 2011, 49, 4996-5001.	5.4	39
124	Structural study of the 0.4-nm single-walled carbon nanotubes aligned in channels of AlPO4-5 crystal. Carbon, 2002, 40, 917-921.	5.4	37
125	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mi>p</mml:mi> -Type Few-Layer <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mm< td=""><td>2.9</td><td>37 /mml:mcubx</td></mm<></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:math 	2.9	37 /mml:mcubx
126	Physical Review Letters, 2017, 118, 067702. Singleâ€Crystalline Vanadium Dioxide Actuators. Advanced Functional Materials, 2019, 29, 1900527.	7.8	37

#	Article	IF	CITATIONS
127	Strained Epitaxy of Monolayer Transition Metal Dichalcogenides for Wrinkle Arrays. ACS Nano, 2021, 15, 6633-6644.	7.3	37
128	Electron localization in metal-decorated graphene. Physical Review B, 2011, 84, .	1.1	36
129	Tailoring the luminescence emission of ZnO nanostructures by hydrothermal post-treatment in water. Applied Physics Letters, 2010, 96, 223105.	1.5	35
130	Electrically tunable physical properties of two-dimensional materials. Nano Today, 2019, 27, 99-119.	6.2	35
131	Determining Interaction Enhanced Valley Susceptibility in Spin-Valley-Locked MoS ₂ . Nano Letters, 2019, 19, 1736-1742.	4.5	35
132	Chemically specific termination control of oxide interfaces via layer-by-layer mean inner potential engineering. Nature Communications, 2018, 9, 2965.	5.8	34
133	On the origin of the giant Hall effect in magnetic granular metals. Physica A: Statistical Mechanics and Its Applications, 1997, 241, 344-349.	1.2	33
134	Preparation of Palladium Catalysts Supported on Carbon Nanotubes by an Electrostatic Adsorption Method. ChemCatChem, 2014, 6, 2600-2606.	1.8	33
135	Oxide-assisted nucleation and growth of copper sulphide nanowire arrays. Journal of Crystal Growth, 2001, 233, 226-232.	0.7	32
136	Superconducting resistive transition in coupled arrays of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mn>4</mml:mn><mml:mspace <br="" width="0.2em">/><mml:mtext>Ã</mml:mtext></mml:mspace></mml:mrow>carbon nanotubes. Physical Review B, 2010, 81, .</mml:math 	1.1	32
137	Symmetry study of the Mnâ€Siâ€Al octagonal quasicrystal by convergent beam electron diffraction. Applied Physics Letters, 1988, 52, 2120-2121.	1.5	31
138	Diamond nucleation enhancement by direct low-energy ion-beam deposition. Physical Review B, 2000, 61, 5579-5586.	1.1	31
139	Novel properties of 0.4 nm single-walled carbon nanotubes templated in the channels of AlPO4-5 single crystals. New Journal of Physics, 2003, 5, 146-146.	1.2	31
140	Modifying electronic transport properties of graphene by electron beam irradiation. Applied Physics Letters, 2011, 99, 033109.	1.5	31
141	V2O5-C-SnO2 Hybrid Nanobelts as High Performance Anodes for Lithium-ion Batteries. Scientific Reports, 2016, 6, 33597.	1.6	31
142	Axial Modulation of Metal–Insulator Phase Transition of VO ₂ Nanowires by Graded Doping Engineering for Optically Readable Thermometers. Journal of Physical Chemistry C, 2017, 121, 24877-24885.	1.5	31
143	Phase management in single-crystalline vanadium dioxide beams. Nature Communications, 2021, 12, 4214.	5.8	31
144	Effect of phason strain on the transition of an octagonal quasicrystal to aβ-Mn-type structure. Physical Review B, 1989, 40, 12183-12186.	1.1	30

#	Article	IF	CITATIONS
145	Oxide Inhibitor-Assisted Growth of Single-Layer Molybdenum Dichalcogenides (MoX ₂ , X =) Tj ETQq1	1_0,78431 7.3	l4ggBT /O∨
146	Growth of multilayers of Bi2Se3/ZnSe: Heteroepitaxial interface formation and strain. Applied Physics Letters, 2011, 98, 043104.	1.5	29
147	Lattice Expansion in Optimally Doped Manganese Oxide: An Effective Structural Parameter for Enhanced Thermochemical Water Splitting. ACS Catalysis, 2019, 9, 9880-9890.	5.5	29
148	The structure and growth mechanism of VO2 nanowires. Journal of Crystal Growth, 2009, 311, 1571-1575.	0.7	28
149	Controlled growth of atomically thin transition metal dichalcogenides via chemical vapor deposition method. Materials Today Advances, 2020, 8, 100098.	2.5	28
150	Long-range exchange coupling between a ferromagnet and an antiferromagnet across a nonmagnetic spacer layer. Journal of Applied Physics, 1997, 81, 4999-5001.	1.1	27
151	Two- and Three-dimensional Arrays of Magnetic Microspheres. Journal of Materials Research, 1999, 14, 1186-1189.	1.2	27
152	A Novel Carbon Nanotube Structure Formed in Ultra-Long Nanochannels of Anodic Aluminum Oxide Templates. Journal of Physical Chemistry B, 2006, 110, 2080-2083.	1.2	27
153	Bending-induced conductance increase in individual semiconductor nanowires and nanobelts. Nano Research, 2009, 2, 553-557.	5.8	27
154	Semimetallic-to-metallic transition and mobility enhancement enabled by reversible iodine doping of graphene. Nanoscale, 2014, 6, 13196-13202.	2.8	26
155	Ambipolar quantum transport in few-layer black phosphorus. Physical Review B, 2017, 96, .	1.1	26
156	Vertically aligned zinc selenide nanoribbon arrays: microstructure and field emission. Journal Physics D: Applied Physics, 2007, 40, 3587-3591.	1.3	25
157	Asymmetric ZnO Panelâ€Like Hierarchical Architectures with Highly Interconnected Pathways for Freeâ€Electron Transport and Photovoltaic Improvements. Chemistry - A European Journal, 2013, 19, 282-287.	1.7	25
158	Site-Specific Deposition of Titanium Oxide on Zinc Oxide Nanorods. Journal of Physical Chemistry C, 2007, 111, 16712-16716.	1.5	24
159	Chemical Stability of ZnO Nanostructures in Simulated Physiological Environments and Its Application in Determining Polar Directions. Inorganic Chemistry, 2008, 47, 7868-7873.	1.9	24
160	Large-scale Mesoscopic Transport in Nanostructured Graphene. Physical Review Letters, 2013, 110, 066805.	2.9	24
161	Impact of Nanoscale Roughness on Heat Transport across the Solid–Solid Interface. Advanced Materials Interfaces, 2020, 7, 1901582.	1.9	24
162	Direct observation of stacking fault tetrahedra in ZnSe/GaAs(001) pseudomorphic epilayers by weak beam dark-field transmission electron microscopy. Applied Physics Letters, 1997, 71, 1225-1227.	1.5	23

#	Article	IF	CITATIONS
163	Crystal morphology and phase purity of diamond crystallites during bias enhanced nucleation and initial growth stages. Journal of Applied Physics, 2000, 88, 3354-3360.	1.1	23
164	Carbon monoxide-assisted growth of carbon nanotubes. Chemical Physics Letters, 2001, 342, 259-264.	1.2	23
165	Control of growth orientation for epitaxially grown ZnSe nanowires. Applied Physics Letters, 2006, 88, 013108.	1.5	23
166	Vertically aligned ZnO/amorphous-Si core–shell heterostructured nanowire arrays. Nanotechnology, 2010, 21, 475703.	1.3	23
167	Antisintering Pd ₁ Catalyst for Propane Direct Dehydrogenation with In Situ Active Sites Regeneration Ability. ACS Catalysis, 2022, 12, 2244-2252.	5.5	23
168	Insight into the Activity of Atomically Dispersed Cu Catalysts for Semihydrogenation of Acetylene: Impact of Coordination Environments. ACS Catalysis, 2022, 12, 48-57.	5.5	23
169	Transformation of the octagonal quasicrystal into the β-Mn-type crystalline structure. Philosophical Magazine Letters, 1990, 61, 63-68.	0.5	22
170	Magnetic materials-based electrorheological fluids. Applied Physics Letters, 1997, 71, 2529-2531.	1.5	22
171	Morphology and microstructure of BaTiO3/SrTiO3 superlattices grown on SrTiO3 by laser molecular-beam epitaxy. Applied Physics Letters, 1999, 75, 3464-3466.	1.5	22
172	Si nanowires synthesized from silicon monoxide by laser ablation. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2001, 19, 317.	1.6	22
173	Detection of interlayer interaction in few-layer graphene. Physical Review B, 2015, 92, .	1.1	22
174	Controllable defect driven symmetry change and domain structure evolution in BiFeO ₃ with enhanced tetragonality. Nanoscale, 2019, 11, 8110-8118.	2.8	22
175	Formation and phase transformation of selenium nanowire arrays in anodic porous alumina templates. Journal of Crystal Growth, 2005, 276, 674-679.	0.7	21
176	Synthesis and characterization of single crystalline selenium nanowire arrays. Materials Research Bulletin, 2006, 41, 1729-1734.	2.7	21
177	From marine plants to photovoltaic devices. Energy and Environmental Science, 2014, 7, 343-346.	15.6	21
178	Directly Metering Light Absorption and Heat Transfer in Single Nanowires Using Metal–Insulator Transition in VO ₂ . Advanced Optical Materials, 2015, 3, 336-341.	3.6	21
179	Multiple Regulation over Growth Direction, Band Structure, and Dimension of Monolayer WS ₂ by a Quartz Substrate. Chemistry of Materials, 2020, 32, 2508-2517.	3.2	21
180	Strain engineering of epitaxial oxide heterostructures beyond substrate limitations. Matter, 2021, 4, 1323-1334.	5.0	21

#	Article	IF	CITATIONS
181	Ordering of the α-FeSi phase in a Fe73.5CuNb3Si13.5B9 magnet. Scripta Metallurgica Et Materialia, 1991, 25, 2011-2016.	1.0	20
182	Synthesis of nanocrystalline diamond by the direct ion beam deposition method. Journal of Materials Research, 1999, 14, 3204-3207.	1.2	20
183	Transmission electron microscopy study of single-walled 0.4 nm carbon nanotubes. Chemical Physics Letters, 2003, 369, 541-548.	1.2	20
184	Photoluminescence study of single ZnO nanostructures: Size effect. Applied Physics Letters, 2009, 95, 053113.	1.5	20
185	Density of States and Its Local Fluctuations Determined by Capacitance of Strongly Disordered Graphene. Scientific Reports, 2013, 3, .	1.6	20
186	A fast transfer-free synthesis of high-quality monolayer graphene on insulating substrates by a simple rapid thermal treatment. Nanoscale, 2016, 8, 2594-2600.	2.8	20
187	Yttrium–barium–copper–oxygen nanorods synthesized by laser ablation. Chemical Physics Letters, 2000, 323, 180-184.	1.2	19
188	Ultra-small single-walled carbon nanotubes and their superconductivity properties. Synthetic Metals, 2003, 133-134, 689-693.	2.1	19
189	One step preparation of proton-functionalized photoluminescent graphitic carbon nitride and its sensing applications. RSC Advances, 2016, 6, 98893-98898.	1.7	19
190	Type-controlled nanodevices based on encapsulated few-layer black phosphorus for quantum transport. 2D Materials, 2016, 3, 031001.	2.0	19
191	Dual Functional Core–Shell Fluorescent Ag ₂ S@Carbon Nanostructure for Selective Assay of <i>E. coli</i> O157:H7 and Bactericidal Treatment. ACS Sensors, 2017, 2, 371-378.	4.0	19
192	Dual-signal model array sensor based on GQDs/AuNPs system for sensitive protein discrimination. Analytica Chimica Acta, 2017, 992, 105-111.	2.6	19
193	45° twins with apparent eightfold symmetry in Cr ₅ Ni ₃ Si ₂ alloy. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1989, 60, 347-363.	0.6	18
194	MBE-grown Au-island-catalyzed ZnSe nanowires. Journal of Crystal Growth, 2005, 278, 146-150.	0.7	18
195	I–Vcharacteristics of Schottky contacts of semiconducting ZnSe nanowires and gold electrodes. Nanotechnology, 2006, 17, 2420-2423.	1.3	18
196	Zn ₂ TiO ₄ â^'ZnO Nanowire Axial Heterostructures Formed by Unilateral Diffusion. Journal of Physical Chemistry C, 2011, 115, 78-82.	1.5	18
197	Modification of electronic properties of top-gated graphene devices by ultrathin yttrium-oxide dielectric layers. Nanoscale, 2013, 5, 1116-1120.	2.8	18
198	Negative Quantum Capacitance Induced by Midgap States in Single-layer Graphene. Scientific Reports, 2013, 3, 2041.	1.6	18

#	Article	IF	CITATIONS
199	Detection of resonant impurities in graphene by quantum capacitance measurement. Physical Review B, 2014, 89, .	1.1	18
200	Anomalous fracture in two-dimensional rhenium disulfide. Science Advances, 2020, 6, .	4.7	18
201	Observation of <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mrow><mml:mi mathvariant="normal">Γ</mml:mi></mml:mrow></mml:math> -Valley Moiré Bands and Emergent Hexagonal Lattice in Twisted Transition Metal Dichalcogenides. Physical Review X. 2022. 12	2.8	18
202	Microstructure observations of silicon carbide nanorods. Journal of Materials Research, 2000, 15, 2020-2026.	1.2	17
203	Ultrathin ZnO nanorods: facile synthesis, characterization and optical properties. Nanotechnology, 2010, 21, 065603.	1.3	17
204	Electron-electron interactions in monolayer graphene quantum capacitors. Nano Research, 2013, 6, 619-626.	5.8	17
205	Probing Defectâ€induced Midgap States in MoS ₂ Through Graphene–MoS ₂ Heterostructures. Advanced Materials Interfaces, 2015, 2, 1500064.	1.9	17
206	Bridging the gap between atomically thin semiconductors and metal leads. Nature Communications, 2022, 13, 1777.	5.8	17
207	Direct observation of domains and discommensurations in Mn-Si-Al octagonal quasicrystal by transmission electron microscopy. Physical Review Letters, 1991, 67, 1302-1305.	2.9	16
208	Structural investigation of self-aligned silicidation on separation by implantation oxygen. Journal of Applied Physics, 1997, 81, 8040-8046.	1.1	16
209	Nitrogen deep accepters in ZnO nanowires induced by ammonia plasma. Applied Physics Letters, 2011, 99,	1.5	16
210	Benzothiadiazole[1,2-b:4,3-b′]dithiophene, a new ladder-type multifused block: Synthesis and photovoltaic application. Organic Electronics, 2014, 15, 3601-3608.	1.4	16
211	Probing the electronic states and impurity effects in black phosphorus vertical heterostructures. 2D Materials, 2016, 3, 015012.	2.0	16
212	Atomic-scale identification of crystalline GaON nanophase for enhanced GaN MIS-FET channel. Applied Physics Letters, 2019, 114, .	1.5	16
213	Defect-enhanced second-harmonic generation in (SimGen)p superlattices. Applied Physics Letters, 1998, 72, 2072-2074.	1.5	15
214	Laser molecular beam epitaxy of BaTiO3 and SrTiO3 ultra thin films. Journal of Crystal Growth, 2000, 212, 173-177.	0.7	15
215	Nanodiamond oreâ€Reinforced, Grapheneâ€Shellâ€Immobilized Platinum Nanoparticles as a Highly Active Catalyst for the Lowâ€Temperature Dehydrogenation of <i>n</i> â€Butane. ChemCatChem, 2018, 10, 520-524.	1.8	15
216	Probing pH variation in living cells and assaying hemoglobin in blood with nitrogen enriched carbon dots. Talanta, 2018, 188, 788-794.	2.9	15

#	Article	IF	CITATIONS
217	The Mobile and Pinned Grain Boundaries in 2D Monoclinic Rhenium Disulfide. Advanced Science, 2020, 7, 2001742.	5.6	15
218	Characterization of buried cobalt silicide layers in Si by MEVVA implantation. Thin Solid Films, 1995, 270, 573-577.	0.8	14
219	MBE growth and structural characterization of ZnS1 â^ x Se x thin films on ITO/glass substrates. Journal of Materials Science Letters, 2003, 22, 483-487.	0.5	14
220	Growth behaviors of ultrathin ZnSe nanowires by Au-catalyzed molecular-beam epitaxy. Applied Physics Letters, 2008, 93, 233107.	1.5	14
221	Structure and Metalâ€ŧoâ€insulator Transition of VO ₂ Nanowires Grown on Sapphire Substrates. European Journal of Inorganic Chemistry, 2010, 2010, 4332-4338.	1.0	14
222	Hierarchical ZnO Nanostructures with Blooming Flowers Driven by Screw Dislocations. Scientific Reports, 2015, 5, 8226.	1.6	14
223	Multistimuliâ€Responsive Insectâ€Scale Soft Robotics Based on Anisotropic Superâ€Aligned VO ₂ Nanowire/Carbon Nanotube Bimorph Actuators. Advanced Intelligent Systems, 2020, 2, 2000051.	3.3	14
224	Direct observation of stacking fault nucleation in the early stage of ZnSe/GaAs pseudomorphic epitaxial layer growth. Applied Physics Letters, 2000, 77, 2846-2848.	1.5	13
225	Epitaxial growth of CoSi2 film by Co/a-Si/Ti/Si(100) multilayer solid state reaction. Journal of Applied Physics, 2001, 89, 2641-2648.	1.1	13
226	Growth temperature dependence of MBE-grown ZnSe Nanowires. Journal of Crystal Growth, 2007, 301-302, 866-870.	0.7	13
227	Twinned structure of Fe ₂ B in an annealed Fe _{73·5} CuNb ₃ Si _{13·5} B ₉ soft magnetic alloy. Philosophical Magazine Letters, 1991, 64, 157-162.	0.5	12
228	Transmission electron microscopy study of stacking faults and the associated partial dislocations in pseudomorphic epilayers of ZnSe/GaAs(001). Journal of Applied Physics, 1996, 80, 5506-5508.	1.1	12
229	Porous polycrystalline silicon conductivity sensor. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1999, 17, 1832-1835.	0.9	12
230	Multiply coated microspheres. A platform for realizing fields-induced structural transition and photonic bandgap. Pure and Applied Chemistry, 2000, 72, 309-315.	0.9	12
231	Electrical transport measurements of the side-contacts and embedded-end-contacts of platinum leads on the same single-walled carbon nanotube. Nanotechnology, 2009, 20, 195202.	1.3	12
232	Tuning the optical and electrical properties of hydrothermally grown ZnO nanowires by sealed post annealing treatment. Solid State Communications, 2013, 160, 41-46.	0.9	12
233	Method of directly imaging the reconstruction on Au(111) and Au(100) by reflection electron microscopy. Ultramicroscopy, 1992, 45, 291-298.	0.8	11
234	Structural characterization of carbon nanotubes and nanoparticles by high-resolution electron microscopy. Chemical Physics Letters, 1994, 229, 587-592.	1.2	11

#	Article	IF	CITATIONS
235	MBE-Grown Cubic ZnS Nanowires. Journal of Electronic Materials, 2008, 37, 1433-1437.	1.0	11
236	Dislocation network at InNâ^•GaN interface revealed by scanning tunneling microscopy. Applied Physics Letters, 2008, 92, 231907.	1.5	11
237	Investigation of the two-gap superconductivity in a few-layer NbSe2 -graphene heterojunction. Physical Review B, 2018, 97, .	1.1	11
238	Subâ€Nanometer Electron Beam Phase Patterning in 2D Materials. Advanced Science, 2022, 9, .	5.6	11
239	Preparation of TEM plan-view and cross-sectional specimens of ZnSe/GaAs epilayers by chemical thinning and argon ion milling. Ultramicroscopy, 1995, 60, 427-435.	0.8	10
240	lâ^'V Characteristics of Metalâ^'Oxideâ^'ZnSe Nanowire Structure. Journal of Physical Chemistry C, 2008, 112, 18644-18650.	1.5	10
241	Spatially resolved photoluminescence study of single ZnO tetrapods. Nanotechnology, 2008, 19, 405702.	1.3	10
242	HRTEM Study of the Mineral Phases in Human Cortical Bone. Advanced Engineering Materials, 2010, 12, B552.	1.6	10
243	Y-shaped ZnO Nanobelts Driven from Twinned Dislocations. Scientific Reports, 2016, 6, 22494.	1.6	10
244	Negative compressibility in graphene-terminated black phosphorus heterostructures. Physical Review B, 2016, 93, .	1.1	10
245	Gate-tunable strong-weak localization transition in few-layer black phosphorus. Nanotechnology, 2018, 29, 035204.	1.3	10
246	Revealing Atomic Structure and Oxidation States of Dopants in Charge-Ordered Nanoparticles for Migration-Promoted Oxygen-Exchange Capacity. Chemistry of Materials, 2019, 31, 5769-5777.	3.2	10
247	Free-Molecular-Flow Modulated Synthesis of Hexagonal Boron Nitride Monolayers. Crystal Growth and Design, 2019, 19, 7007-7014.	1.4	10
248	Enhanced Gate Reliability in GaN MIS-FETs by Converting the GaN Channel into Crystalline Gallium Oxynitride. ACS Applied Electronic Materials, 2019, 1, 642-648.	2.0	10
249	REM study of Au(100) reconstructed surfaces. Surface Science, 1993, 284, L419-L425.	0.8	9
250	Ultrastructure study of hydroxyapatite precipitation on ceramic surfaces in dog model. Materials Science and Engineering C, 2008, 28, 1255-1259.	3.8	9
251	The alternative route of low-temperature preparation of highly oriented lead zirconate titanate thin films by high gas-pressure processing. Journal of Materials Research, 2008, 23, 2846-2853.	1.2	9
252	Nanostructural Transformation and Formation of Heterojunctions from Si Nanowires. ACS Nano, 2010, 4, 5559-5564.	7.3	9

#	Article	IF	CITATIONS
253	Digital flow control of electroosmotic pump: Onsager coefficients and interfacial parameters determination. Solid State Communications, 2011, 151, 440-445.	0.9	9
254	Negative compressibility observed in graphene containing resonant impurities. Applied Physics Letters, 2013, 102, .	1.5	9
255	Observation of A1g Raman mode splitting in few layer black phosphorus encapsulated with hexagonal boron nitride. Nanoscale, 2017, 9, 19298-19303.	2.8	9
256	A TEM and DLTS Study of a near Σ25 CdTe Bicrystal. Physica Status Solidi A, 1991, 128, 37-43.	1.7	8
25 7	Carbon-assisted nucleation and vertical growth of high-quality ZnO nanowire arrays. AIP Advances, 2011, 1, 032104.	0.6	8
258	Induced Ising spin-orbit interaction in metallic thin films on monolayer <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>WS</mml:mi><mml:msub><mml:n mathvariant="normal">e<mml:mn>2</mml:mn></mml:n </mml:msub></mml:mrow>. Physical Review B, 2019, 99, .</mml:math 	¹ⁱ 1.1	8
259	Layer-dependent interface reconstruction and strain modulation in twisted WSe ₂ . Nanoscale, 2021, 13, 13624-13630.	2.8	8
260	A facile strategy to construct layered membranes with high and stable proton conductivity based on sulfonated graphene oxide. International Journal of Energy Research, 0, , .	2.2	8
261	Growth temperature dependence of the structural and photoluminescence properties of MBE-grown ZnS nanowires. Journal of Crystal Growth, 2009, 311, 2630-2634.	0.7	7
262	Maximum efficiency of the electro-osmotic pump. Physical Review E, 2011, 83, 066303.	0.8	7
263	Side-gate modulation effects on high-quality BN-Graphene-BN nanoribbon capacitors. Applied Physics Letters, 2014, 105, .	1.5	7
264	A green route and rational design for ZnO-based high-efficiency photovoltaics. Nanoscale, 2014, 6, 5093.	2.8	7
265	Three Dimensional Sculpturing of Vertical Nanowire Arrays by Conventional Photolithography. Scientific Reports, 2016, 6, 18886.	1.6	7
266	Low-temperature wafer-scale fabrication of vertical VO2 nanowire arrays. Applied Physics Letters, 2020, 117, .	1.5	7
267	Constructing Anhydrous Proton Conductive Aramid Membranes through Grafting Kevlar Micro-fibrils with Phosphoric Acid. Fibers and Polymers, 2021, 22, 1502-1510.	1.1	7
268	Fully-exposed Pt clusters stabilized on Sn-decorated nanodiamond/graphene hybrid support for efficient ethylbenzene direct dehydrogenation. Nano Research, 2022, 15, 10029-10036.	5.8	7
269	Transmission electron microscopy study of stacking-fault trapezoids and stacking-fault tubes in ZnSe/GaAs(001) pseudomorphic epitaxial layers. Philosophical Magazine Letters, 1997, 76, 153-158.	0.5	6
270	The effect of ion bombardment on the nucleation of CVD diamond. Diamond and Related Materials, 1999, 8, 1414-1417.	1.8	6

#	Article	IF	CITATIONS
271	Electron diffraction study of octagonal-cubic phase transitions in Mn-Si-Al. Physical Review B, 2000, 62, 3078-3082.	1.1	6
272	Surface passivation in diamond nucleation. Physical Review B, 2000, 62, 17134-17137.	1.1	6
273	Molecular beam epitaxy—Grown ZnSe nanowires. Journal of Electronic Materials, 2006, 35, 1246-1250.	1.0	6
274	Synthesis and Characterization of Hydrocarbon Coating Prepared by in Situ Electron Beam Deposition on ZnSe Nanowire. Journal of Physical Chemistry C, 2008, 112, 7572-7578.	1.5	6
275	Molecular-beam epitaxy of AlInN: An effect of source flux and temperature on indium atom incorporation in alloys. Journal of Applied Physics, 2010, 108, 033503.	1.1	6
276	Surface modification for epitaxial growth of single crystalline cobalt thin films with uniaxial magnetic anisotropy on GaN(0001)-1×1 surfaces. New Journal of Physics, 2010, 12, 073007.	1.2	6
277	Observation of the Meissner state in superconducting arrays of 4-Ã carbon nanotubes. Physical Review B, 2011, 83, .	1.1	6
278	Quantum exciton solid in bilayer two-dimensional electron-hole systems. Physical Review B, 2020, 102,	1.1	6
279	In situ atomic-scale studies of thermal stability and surface reconstruction of ZnO nanowires based Pd nanocatalysts. Materials and Design, 2021, 209, 109947.	3.3	6
280	Towards a library of atomically dispersed catalysts. Materials and Design, 2021, 210, 110080.	3.3	6
281	Thermal stability, ripening dynamics and coalescing microstructures of reduced graphene oxide-based platinum nanocatalysts: An in-situ TEM study. Diamond and Related Materials, 2021, 120, 108690.	1.8	6
282	The Origin of Electrically Active Centers in a Nearâ€Coincidence Σ9 Grain Boundary in Germanium. Physica Status Solidi (B): Basic Research, 1991, 166, 347-358.	0.7	5
283	In-situ observation of the phase transition on Au(100) surfaces. Surface Science, 1993, 296, L1-L7.	0.8	5
284	Field-induced structural transition in mesocrystallites. Physica B: Condensed Matter, 2000, 279, 168-170.	1.3	5
285	Dispersion, refinement, and manipulation of single silicon nanowires. Applied Physics Letters, 2002, 80, 1812-1814.	1.5	5
286	Formation mechanism of nanotrenches induced by mobile catalytic nanoparticles. Applied Physics Letters, 2008, 92, .	1.5	5
287	Luminescence enhancement of ZnO-core/a-SiN_x:H-shell nanorod arrays. Optics Express, 2013, 21, 5891.	1.7	5
288	Lead-induced stress corrosion cracking behavior of mechanically surface-treated alloy 690. Materials Research Letters, 2016, 4, 180-184.	4.1	5

#	Article	IF	CITATIONS
289	Revealing high temperature stability of platinum nanocatalysts deposited on graphene oxide by in-situ TEM. Materials Characterization, 2020, 170, 110706.	1.9	5
290	Large-Size Superlattices Synthesized by Sequential Sulfur Substitution-Induced Transformation of Metastable MoTe ₂ . Chemistry of Materials, 2021, 33, 9760-9768.	3.2	5
291	Transmission Electron Microscopy Study of Room Temperature Lasing Epitaxial ZnO Films on Sapphire. Materials Research Society Symposia Proceedings, 1997, 482, 481.	0.1	4
292	Carbon and group II acceptor coimplantation in GaAs. Journal of Applied Physics, 1998, 84, 4929-4934.	1.1	4
293	Formation of crystalline diamond by ion beam deposition. Journal of Non-Crystalline Solids, 1999, 254, 174-179.	1.5	4
294	Electrical and Optical Properties of Ultra-small Carbon Nanotubes Arrayed in Channels of Zeolite Single Crystals. Materials Transactions, 2003, 44, 2066-2069.	0.4	4
295	Triple-period partial misfit dislocations at the InN/GaN (0001) interface: A new dislocation core structure for III-N materials. Surface Science, 2012, 606, 1728-1738.	0.8	4
296	Charge density wave phase transition on the surface of electrostatically doped multilayer graphene. Applied Physics Letters, 2016, 109, .	1.5	4
297	Ohmic contacts for atomically-thin transition metal dichalcogenide semiconductors. Journal of Semiconductors, 2020, 41, 070401.	2.0	4
298	Enhancing proton conductivity of phosphoric acidâ€doped Kevlar nanofibers membranes by incorporating polyacrylamide and <scp>1â€butylâ€3â€methylimidazolium</scp> chloride. International Journal of Energy Research, 2020, 44, 11772-11782.	2.2	4
299	TEM and DLTS Investigations of the Electrical Activity of Σ17 and Σ41 Grain Boundaries in Germanium. Physica Status Solidi (B): Basic Research, 1992, 170, 403-411.	0.7	3
300	Nanotrenches Induced by Catalyst Particles on ZnSe Surfaces. Journal of Electronic Materials, 2008, 37, 1344-1348.	1.0	3
301	Effect of the starting surfaces of GaN on defect formation in epitaxial Co thin films. Journal of Applied Physics, 2011, 110, 093501.	1.1	3
302	Correlation between the Morphology and Performance Enhancement of ZnO Hierarchical Flower Photoanodes in Quasi-Solid Dye-Sensitized Solar Cells. Journal of Nanomaterials, 2012, 2012, 1-8.	1.5	3
303	Effective control of photoluminescence from ZnO nanowires by a-SiN_x:H decoration. Optics Letters, 2012, 37, 211.	1.7	3
304	Ni –NTA-COATED NANOWIRE MATERIALS FOR PROTEIN ENRICHMENT AND THE APPLICATION IN A MEDICAL DEVICE USED FOR BLOOD GLUCOSE DEGRADATION. Nano, 2013, 08, 1350029.	0.5	3
305	Metal-insulator transitions in bilayer electron-hole systems in transition metal dichalcogenides. Physical Review B, 2021, 104, .	1.1	3
306	Sample refinement and manipulation of silicon nanowires. Materials Characterization, 2002, 48, 177-181.	1.9	2

#	Article	IF	CITATIONS
307	In siturevelation of a zinc-blende InN wetting layer during Stranski-Krastanov growth on GaN(0001) by molecular-beam epitaxy. Physical Review B, 2005, 71, .	1.1	2
308	Synthesis and Properties of ZnSe Precursor and ZnSe Nanoribbon Arrays on Zn Substrates. AIP Conference Proceedings, 2007, , .	0.3	2
309	1D goes 2D: A Berezinskii–Kosterlitz–Thouless transition in superconducting arrays of 4â€Angstrom carbon nanotubes. Physica Status Solidi (B): Basic Research, 2010, 247, 2968-2973.	0.7	2
310	Fluctuation-induced tunneling conduction in iodine-doped bilayer graphene. Journal of Applied Physics, 2018, 123, 244302.	1.1	2
311	In-Situ Transmission Electron Microscopy: Electron Beam Effects in Carbon-based Nanomaterials. Microscopy and Microanalysis, 2021, 27, 2110-2113.	0.2	2
312	Probing 2D magnetism through electronic tunneling transport. Materials and Design, 2021, 212, 110235.	3.3	2
313	Coherent Heterostructure Mesh Grown by Gap-Filling Epitaxial Chemical Vapor Deposition. Chemistry of Materials, 0, , .	3.2	2
314	Contrast variation of Au(111) reconstructed surfaces with defocus in REM. Ultramicroscopy, 1993, 50, 239-243.	0.8	1
315	High resolution electron microscopy study of as-grown, crushed and cleaved C60 crystals. Surface Science, 1995, 328, L539-L545.	0.8	1
316	Epitaxial growth of β-SiC on Si (100) by low energy ion beam deposition. Diamond and Related Materials, 2001, 10, 1927-1931.	1.8	1
317	MBE-Grown II–VI and Related Nanostructures. Journal of Electronic Materials, 2010, 39, 882-892.	1.0	1
318	Carbon-assisted growth technology for ZnO nanowires. , 2010, , .		1
319	Three-Mode Behavior of Spin-Transfer Vortex Oscillators With Dynamic Polarizer. IEEE Transactions on Magnetics, 2011, 47, 3704-3707.	1.2	1
320	A Tunable Resonant Circuit Based on Graphene Quantum Capacitor. Advanced Electronic Materials, 2021, 7, 2001009.	2.6	1
321	Transmission electron microscopy of cross-sections of magnetoresistive read heads. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1999, 79, 107-112.	0.8	0
322	Fabrication and Structural Characterization of Ultrathin Nanoscale Wires and Particles. , 2006, , 93-129.		0
323	TEM Examinations of OCP/HA Transformation. Key Engineering Materials, 2006, 309-311, 191-194.	0.4	0
324	IMAGING 0.4 nm SINGLE-WALLED CARBON NANOTUBES WITH ATOMIC FORCE MICROSCOPY. Surface Review and Letters, 2007, 14, 687-692.	0.5	0

#	Article	IF	CITATIONS
325	Growth of ultra thin ZnSe nanowires. Materials Research Society Symposia Proceedings, 2008, 1144, 1.	0.1	Ο
326	Characterization of Semiconductor Nanowires by HRTEM and In-Situ TEM. Microscopy and Microanalysis, 2009, 15, 1186-1187.	0.2	0
327	Fabrication and structure characterization of Te butterfly nanostructures. , 2010, , .		0
328	Fabrication and Structure Characterization of Te Butterfly Nanostructures. Journal of Nanoscience and Nanotechnology, 2011, 11, 11037-11040.	0.9	0
329	Resolving Nanostructured Materials Down to the Single-atom Limit. Microscopy and Microanalysis, 2020, 26, 1756-1758.	0.2	0
330	Electronic Transport in Few-Layer Black Phosphorus. , 0, , .		0
331	The Smallest Carbon Nanotubes. , 2003, , 95-120.		0
332	Ultra-small Single-walled Carbon Nanotubes and their Novel Properties. , 2003, , 135-141.		0
333	Superconductivity in 4-Angstrom Carbon Nanotubes. , 2003, , 126-134.		0