List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4742455/publications.pdf Version: 2024-02-01

JOHN H DAWSON

#	Article	IF	CITATIONS
1	Spectroscopic evidence supporting neutral thiol ligation to ferrous heme iron. Journal of Biological Inorganic Chemistry, 2018, 23, 1085-1092.	1.1	8
2	Oxidizing Intermediates in P450 Catalysis: A Case for Multiple Oxidants. Advances in Experimental Medicine and Biology, 2015, 851, 63-81.	0.8	25
3	Control of carotenoid biosynthesis through a heme-based cis-trans isomerase. Nature Chemical Biology, 2015, 11, 598-605.	3.9	72
4	Spectroscopic Determination of Distinct Heme Ligands in Outer-Membrane Receptors PhuR and HasR of <i>Pseudomonas aeruginosa</i> . Biochemistry, 2015, 54, 2601-2612.	1.2	26
5	Heme Binding by <i>Corynebacterium diphtheriae</i> HmuT: Function and Heme Environment. Biochemistry, 2015, 54, 6598-6609.	1.2	17
6	Structures of K42N and K42Y sperm whale myoglobins point to an inhibitory role of distal water in peroxidase activity. Acta Crystallographica Section D: Biological Crystallography, 2014, 70, 2833-2839.	2.5	4
7	Redox-dependent stability, protonation, and reactivity of cysteine-bound heme proteins. Proceedings of the United States of America, 2014, 111, E306-15.	3.3	43
8	Evidence of the Direct Involvement of the Substrate TCP Radical in Functional Switching from Oxyferrous O ₂ Carrier to Ferric Peroxidase in the Dual-Function Hemoglobin/Dehaloperoxidase from <i>Amphitrite ornata</i> . Biochemistry, 2014, 53, 4956-4969.	1.2	15
9	Influence of heme environment structure on dioxygen affinity for the dual function Amphitrite ornata hemoglobin/dehaloperoxidase. Insights into the evolutional structure–function adaptations. Archives of Biochemistry and Biophysics, 2014, 545, 108-115.	1.4	21
10	Electron Paramagnetic Resonance and Electron-Nuclear Double Resonance Studies of the Reactions of Cryogenerated Hydroperoxoferric–Hemoprotein Intermediates. Biochemistry, 2014, 53, 4894-4903.	1.2	14
11	Investigations of Heme Ligation and Ligand Switching in Cytochromes P450 and P420. Biochemistry, 2013, 52, 5941-5951.	1.2	33
12	The Use of Deuterated Camphor as a Substrate in ¹ H ENDOR Studies of Hydroxylation by Cryoreduced Oxy P450cam Provides New Evidence of the Involvement of Compound I. Biochemistry, 2013, 52, 667-671.	1.2	26
13	Complexes of Dual-Function Hemoglobin/Dehaloperoxidase with Substrate 2,4,6-Trichlorophenol Are Inhibitory and Indicate Binding of Halophenol to Compound I. Biochemistry, 2013, 52, 6203-6210.	1.2	34
14	Mono- and bis-phosphine-ligated H93G myoglobin: Spectral models for ferrous-phosphine and ferrous-CO cytochrome P450. Journal of Inorganic Biochemistry, 2013, 127, 238-245.	1.5	4
15	Reaction of ferric <i>Caldariomyces fumago</i> chloroperoxidase with <i>meta</i> -chloroperoxybenzoic acid: sequential formation of compound I, compound II and regeneration of the ferric state using one reactant. Journal of Porphyrins and Phthalocyanines, 2013, 17. 63-72.	0.4	7
16	A Heme-based Redox Sensor in the Methanogenic Archaeon Methanosarcina acetivorans. Journal of Biological Chemistry, 2013, 288, 18458-18472.	1.6	19
17	Characterization of Heme Ligation Properties of Rv0203, a Secreted Heme Binding Protein Involved in <i>Mycobacterium tuberculosis</i> Heme Uptake. Biochemistry, 2012, 51, 1518-1531.	1.2	63
18	Complex of myoglobin with phenol bound in a proximal cavity. Acta Crystallographica Section F: Structural Biology Communications, 2012, 68, 1465-1471.	0.7	5

#	Article	IF	CITATIONS
19	Single turnover studies of oxidative halophenol dehalogenation by horseradish peroxidase reveal a mechanism involving two consecutive one electron steps: Toward a functional halophenol bioremediation catalyst. Journal of Inorganic Biochemistry, 2012, 117, 316-321.	1.5	14
20	Heme Binding Properties of Clyceraldehyde-3-phosphate Dehydrogenase. Biochemistry, 2012, 51, 8514-8529.	1.2	56
21	<i>Amphitrite ornata</i> Dehaloperoxidase (DHP): Investigations of Structural Factors That Influence the Mechanism of Halophenol Dehalogenation Using "Peroxidase-like―Myoglobin Mutants and "Myoglobin-like―DHP Mutants. Biochemistry, 2011, 50, 8172-8180.	1.2	38
22	Alkylamine-Ligated H93G Myoglobin Cavity Mutant: A Model System for Endogenous Lysine and Terminal Amine Ligation in Heme Proteins such as Nitrite Reductase and Cytochrome <i>f</i> . Inorganic Chemistry, 2011, 50, 1242-1249.	1.9	14
23	A Novel Intermediate in the Reaction of Seleno CYP119 with <i>m</i> -Chloroperbenzoic Acid. Biochemistry, 2011, 50, 3014-3024.	1.2	17
24	Molecular basis for the inability of an oxygen atom donor ligand to replace the natural sulfur donor heme axial ligand in cytochrome P450 catalysis. Spectroscopic characterization of the Cys436Ser CYP2B4 mutant. Archives of Biochemistry and Biophysics, 2011, 507, 119-125.	1.4	15
25	Coordination modes of tyrosinate-ligated catalase-type heme enzymes: Magnetic circular dichroism studies of Plexaura homomalla allene oxide synthase, Mycobacterium avium ssp. paratuberculosis protein-2744c, and bovine liver catalase in their ferric and ferrous states. Journal of Inorganic Biochemistry. 2011, 105, 1786-1794.	1.5	12
26	The H93G myoglobin cavity mutant as a versatile scaffold for modeling heme iron coordination structures in protein active sites and their characterization with magnetic circular dichroism spectroscopy. Coordination Chemistry Reviews, 2011, 255, 700-716.	9.5	46
27	Stabilization and spectroscopic characterization of the dioxygen complex of wild-type cytochrome P4502B4 (CYP2B4) and its distal side E301Q, T302A and proximal side F429H mutants at subzero temperatures. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2011, 1814, 69-75.	1.1	8
28	Ferric His93Gly myoglobin cavity mutant and its complexes with thioether and selenolate as heme protein models. Journal of Porphyrins and Phthalocyanines, 2011, 15, 29-38.	0.4	5
29	Magnetic circular dichroism spectroscopic characterization of the NOS-like protein from Geobacillus stearothermophilus (gsNOS)â~†. Journal of Inorganic Biochemistry, 2010, 104, 357-364.	1.5	4
30	Heme Binding to the Mammalian Circadian Clock Protein Period 2 Is Nonspecific. Biochemistry, 2010, 49, 4327-4338.	1.2	36
31	Probing the Oxyferrous and Catalytically Active Ferryl States of <i>Amphitrite ornata</i> Dehaloperoxidase by Cryoreduction and EPR/ENDOR Spectroscopy. Detection of Compound I. Journal of the American Chemical Society, 2010, 132, 14995-15004.	6.6	43
32	Functional Switching of <i>Amphitrite ornata</i> Dehaloperoxidase from O ₂ -Binding Globin to Peroxidase Enzyme Facilitated by Halophenol Substrate and H ₂ O ₂ . Biochemistry, 2010, 49, 6064-6069.	1.2	37
33	Replacement of the axial histidine heme ligand with cysteine in nitrophorin 1: spectroscopic and crystallographic characterization. Journal of Biological Inorganic Chemistry, 2009, 14, 179-191.	1.1	21
34	The Mechanism of Oxidative Halophenol Dehalogenation by <i>Amphitrite ornata</i> Dehaloperoxidase Is Initiated by H ₂ O ₂ Binding and Involves Two Consecutive One-Electron Steps: Role of Ferryl Intermediates. Biochemistry, 2009, 48, 4231-4238.	1.2	61
35	Effects of urea and acetic acid on the heme axial ligation structure of ferric myoglobin at very acidic pH. Archives of Biochemistry and Biophysics, 2009, 489, 68-75.	1.4	14
36	Replacement of tyrosine residues by phenylalanine in cytochrome P450cam alters the formation of Cpd II-like species in reactions with artificial oxidants. Journal of Biological Inorganic Chemistry, 2008, 13, 599-611.	1.1	29

#	Article	IF	CITATIONS
37	Preface. Journal of Inorganic Biochemistry, 2008, 102, 993.	1.5	Ο
38	Characterization of SiaA, a Streptococcal Heme-Binding Protein Associated with a Heme ABC Transport System. Biochemistry, 2008, 47, 2678-2688.	1.2	40
39	EPR and ENDOR Studies of Cryoreduced Compounds II of Peroxidases and Myoglobin. Proton-Coupled Electron Transfer and Protonation Status of Ferryl Hemes. Biochemistry, 2008, 47, 5147-5155.	1.2	57
40	Low-Frequency Dynamics of Caldariomyces fumago Chloroperoxidase Probed by Femtosecond Coherence Spectroscopy. Biochemistry, 2008, 47, 5156-5167.	1.2	17
41	The proximal and distal pockets of the H93G myoglobin cavity mutant bind identical ligands with different affinities: Quantitative analysis of imidazole and pyridine binding. Spectroscopy, 2008, 22, 123-141.	0.8	8
42	Cytochrome P450-Catalyzed Hydroxylations and Epoxidations. , 2007, , 319-359.		2
43	The ferric-hydroperoxo complex of chloroperoxidase. Biochemical and Biophysical Research Communications, 2007, 363, 954-958.	1.0	31
44	Caldariomyces fumago Chloroperoxidase Catalyzes the Oxidative Dehalogenation of Chlorophenols by a Mechanism Involving Two One-Electron Steps. Journal of the American Chemical Society, 2007, 129, 14838-14839.	6.6	38
45	Horse Heart Myoglobin Catalyzes the H ₂ O ₂ -Dependent Oxidative Dehalogenation of Chlorophenols to DNA-Binding Radicals and Quinones. Biochemistry, 2007, 46, 9823-9829.	1.2	40
46	C. fumagoChloroperoxidase is also a Dehaloperoxidase:Â Oxidative Dehalogenation of Halophenols. Journal of the American Chemical Society, 2006, 128, 1036-1037.	6.6	92
47	Evaluation of Electron-Withdrawing Group Effects on Heme Binding in Designed Proteins: Implications for Heme a in Cytochrome c Oxidase. Inorganic Chemistry, 2006, 45, 4685-4694.	1.9	19
48	Structures of Thiolate- and Carboxylate-Ligated Ferric H93G Myoglobin:  Models for Cytochrome P450 and for Oxyanion-Bound Heme Proteins,. Biochemistry, 2006, 45, 3170-3177.	1.2	21
49	Rapid Freeze-Quench ENDOR Study of Chloroperoxidase Compound I:Â The Site of the Radical. Journal of the American Chemical Society, 2006, 128, 5598-5599.	6.6	82
50	Spectroscopic characterization of the ferric states of Amphitrite ornata dehaloperoxidase and Notomastus lobatus chloroperoxidase: His-ligated peroxidases with globin-like proximal and distal properties. Journal of Inorganic Biochemistry, 2006, 100, 1100-1108.	1.5	31
51	Rapid kinetics investigations of peracid oxidation of ferric cytochrome P450cam: Nature and possible function of compound ESâ~†. Journal of Inorganic Biochemistry, 2006, 100, 2034-2044.	1.5	41
52	Spectroscopic investigations of intermediates in the reaction of cytochrome P450BM3–F87G with surrogate oxygen atom donorsâ~†. Journal of Inorganic Biochemistry, 2006, 100, 2045-2053.	1.5	28
53	Reaction of Ferric Cytochrome P450cam with Peracids. Journal of Biological Chemistry, 2005, 280, 20300-20309.	1.6	113
54	Direct Observation of a Novel Perturbed Oxyferrous Catalytic Intermediate during Reduced Putidaredoxin-initiated Turnover of Cytochrome P-450-CAM. Journal of Biological Chemistry, 2005, 280, 42134-42141.	1.6	30

#	Article	IF	CITATIONS
55	Cryoreduction EPR and 13C, 19F ENDOR study of substrate-bound substates and solvent kinetic isotope effects in the catalytic cycle of cytochrome P450cam and its T252A mutant. Dalton Transactions, 2005, , 3464.	1.6	29
56	Substrate Modulation of the Properties and Reactivity of the Oxy-Ferrous and Hydroperoxo-Ferric Intermediates of Cytochrome P450cam As Shown by Cryoreduction-EPR/ENDOR Spectroscopy. Journal of the American Chemical Society, 2005, 127, 1403-1413.	6.6	98
57	Characterization of the Periplasmic Heme-Binding Protein ShuT from the Heme Uptake System of Shigella dysenteriae. Biochemistry, 2005, 44, 13179-13191.	1.2	98
58	Subzero-temperature stabilization and spectroscopic characterization of homogeneous oxyferrous complexes of the cytochrome P450 BM3 (CYP102) oxygenase domain and holoenzyme. Biochemical and Biophysical Research Communications, 2005, 338, 365-371.	1.0	11
59	The influence of substrate on the spectral properties of oxyferrous wild-type and T252A cytochrome P450-CAM. Archives of Biochemistry and Biophysics, 2005, 436, 40-49.	1.4	26
60	Electrochemistry of Unfolded Cytochromecin Neutral and Acidic Urea Solutions. Journal of the American Chemical Society, 2005, 127, 7638-7646.	6.6	51
61	Oxoiron(IV) in Chloroperoxidase Compound II Is Basic: Implications for P450 Chemistry. Science, 2004, 304, 1653-1656.	6.0	477
62	Modeling heme protein active sites with the his93gly cavity mutant of sperm whale myoglobin: complexes with nitrogen-, oxygen- and sulfur-donor proximal ligands. Journal of Porphyrins and Phthalocyanines, 2004, 08, 246-254.	0.4	7
63	EpoK, a Cytochrome P450 Involved in Biosynthesis of the Anticancer Agents Epothilones A and B. Substrate-Mediated Rescue of a P450 Enzyme. Biochemistry, 2004, 43, 14712-14721.	1.2	75
64	Hydroperoxoferric heme intermediate as a second electrophilic oxidant in cytochrome P450-catalyzed reactions. Journal of Biological Inorganic Chemistry, 2004, 9, 644-653.	1.1	70
65	The heme iron coordination of unfolded ferric and ferrous cytochrome c in neutral and acidic urea solutions. Spectroscopic and electrochemical studies. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2004, 1703, 31-41.	1.1	49
66	Design of a Five-Coordinate Heme Protein Maquette:Â A Spectroscopic Model of Deoxymyoglobin. Inorganic Chemistry, 2004, 43, 8218-8220.	1.9	31
67	Amphitrite ornata dehaloperoxidase: enhanced activity for the catalytically active globin using MCPBA. Biochemical and Biophysical Research Communications, 2004, 324, 1194-1198.	1.0	47
68	Synthesis of quinolines, pyridine ligands and biological probes in green mediaThis work was presented at the Green Solvents for Catalysis Meeting, held in Bruchsal, Germany, 13–16th October 2002 Green Chemistry, 2003, 5, 177-180.	4.6	27
69	Spectroscopic Characterization of Five- and Six-Coordinate Ferrousâ^'NO Heme Complexes. Evidence for Heme Feâ^'Proximal Cysteinate Bond Cleavage in the Ferrousâ^'NO Adducts of the Trp-409Tyr/Phe Proximal Environment Mutants of Neuronal Nitric Oxide Synthase. Biochemistry, 2003, 42, 2475-2484.	1.2	31
70	Epoxidation of Olefins by Hydroperoxoâ^'Ferric Cytochrome P450. Journal of the American Chemical Society, 2003, 125, 3406-3407.	6.6	149
71	Neutral thiol as a proximal ligand to ferrous heme iron: Implications for heme proteins that lose cysteine thiolate ligation on reduction. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 3641-3646.	3.3	149
72	Sensitizer-linked substrates and ligands: Ruthenium probes of cytochrome P450 structure and mechanism. Methods in Enzymology, 2002, 357, 120-133.	0.4	10

#	Article	IF	CITATIONS
73	EPR and ENDOR Characterization of Intermediates in the Cryoreduced Oxy-Nitric Oxide Synthase Heme Domain with Bound I-Arginine or NG-Hydroxyarginine. Biochemistry, 2002, 41, 10375-10381.	1.2	116
74	Initial characterization of the ferric H175G cytochrome c peroxidase cavity mutant using magnetic circular dichroism spectroscopy: phosphate from the buffer as an axial ligand. International Congress Series, 2002, 1233, 25-35.	0.2	0
75	H93G myoglobin cavity mutant as versatile template for modeling heme proteins: Magnetic circular dichroism studies of thiolate- and imidazole-ligated complexes. Biopolymers, 2002, 67, 200-206.	1.2	12
76	Characterization of the Coral Allene Oxide Synthase Active Site with UVâ^'Visible Absorption, Magnetic Circular Dichroism, and Electron Paramagnetic Resonance Spectroscopy:  Evidence for Tyrosinate Ligation to the Ferric Enzyme Heme Iron. Biochemistry, 2001, 40, 2251-2259.	1.2	36
77	Preparation and Initial Characterization of the Compound I, II, and III States of Iron Methylchlorin-Reconstituted Horseradish Peroxidase and Myoglobin: Models for Key Intermediates in Iron Chlorin Enzymes. Biochemical and Biophysical Research Communications, 2000, 279, 1011-1015.	1.0	14
78	The H93G Myoglobin Cavity Mutant as a Versatile Template for Modeling Heme Proteins:Â Ferrous, Ferric, and Ferryl Mixed-Ligand Complexes with Imidazole in the Cavity. Inorganic Chemistry, 2000, 39, 6061-6066.	1.9	45
79	Magnetic circular dichroism studies of the active site heme coordination sphere of exogenous ligand-free ferric cytochrome c peroxidase from yeast: effects of sample history and pH1The reviewing and handling of this manuscript was overseen by a member of the editorial board.1. Journal of Inorganic Biochemistry, 1999, 76, 165-174.	1.5	12
80	A study of the K+-site mutant of ascorbate peroxidase: mutations of protein residues on the proximal side of the heme cause changes in iron ligation on the distal side. Journal of Biological Inorganic Chemistry, 1999, 4, 64-72.	1.1	34
81	Influence of protein environment on magnetic circular dichroism spectral properties of ferric and ferrous ligand complexes of yeast cytochromec peroxidase. , 1999, 5, S42-S52.		11
82	Substrates for Rapid Delivery of Electrons and Holes to Buried Active Sites in Proteins. Angewandte Chemie - International Edition, 1999, 38, 89-92.	7.2	69
83	Engineering CytochromecPeroxidase into Cytochrome P450:Â A Proximal Effect on Hemeâ^'Thiolate Ligationâ€. Biochemistry, 1999, 38, 11122-11129.	1.2	67
84	Assignment of the Heme Axial Ligand(s) for the Ferric Myoglobin (H93G) and Heme Oxygenase (H25A) Cavity Mutants as Oxygen Donors Using Magnetic Circular Dichroism. Biochemistry, 1999, 38, 7601-7608.	1.2	53
85	Essential Thiol Requirement To Restore Pterin- or Substrate-Binding Capability and To Regenerate Native Enzyme-Type High-Spin Heme Spectra in theEscherichia coli-Expressed Tetrahydrobiopterin-Free Oxygenase Domain of Neuronal Nitric Oxide Synthaseâ€. Biochemistry, 1999, 38, 15853-15862.	1.2	15
86	Formation of a Five-Coordinate Hydroxide-Bound Heme in the His93Gly Mutant of Sperm Whale Myoglobin. Inorganic Chemistry, 1999, 38, 1952-1953.	1.9	37
87	The Role of the Distal and Proximal Protein Environments in Controlling the Ferric Spin State and in Stabilizing Thiolate Ligation in Heme Systems:Â Thiolate Adducts of the Myoglobin H93G Cavity Mutant. Journal of the American Chemical Society, 1999, 121, 12088-12093.	6.6	49
88	Low-Temperature Stabilization and Spectroscopic Characterization of the Dioxygen Complex of the Ferrous Neuronal Nitric Oxide Synthase Oxygenase Domainâ€. Biochemistry, 1999, 38, 8014-8021.	1.2	54
89	Haem iron-containing peroxidases. Essays in Biochemistry, 1999, 34, 51-69.	2.1	39
90	Spectroscopic study of the compound ES and the oxoferryl compound II states of cytochrome c peroxidase: comparison with the compound II of horseradish peroxidase. Inorganica Chimica Acta, 1998, 275-276, 250-255.	1.2	16

#	Article	IF	CITATIONS
91	The Unusual Reactivities ofAmphitrite ornataDehaloperoxidase andNotomastus lobatusChloroperoxidase Do Not Arise from a Histidine Imidazolate Proximal Heme Iron Ligand. Journal of the American Chemical Society, 1998, 120, 4658-4661.	6.6	68
92	Histidine-Tailed Microperoxidase-10: A pH-Dependent Ligand Switch. Biochemical and Biophysical Research Communications, 1998, 253, 195-198.	1.0	10
93	Notomastus lobatusChloroperoxidase andAmphitrite ornataDehaloperoxidase Both Contain Histidine as Their Proximal Heme Iron Ligandâ€. Biochemistry, 1997, 36, 2197-2202.	1.2	53
94	Tetrahydrobiopterin requirement for spectral reconstitution of native intact neuronal no synthase from its separated oxygenase and reductase domains. Journal of Inorganic Biochemistry, 1997, 67, 135.	1.5	1
95	Probing the Heme Iron Coordination Structure of Alkaline Chloroperoxidaseâ€. Biochemistry, 1996, 35, 14537-14543.	1.2	42
96	Probing the Heme Iron Coordination Structure of Pressure-Induced Cytochrome P420camâ€. Biochemistry, 1996, 35, 14530-14536.	1.2	111
97	Book ReviewsÂCytochrome P450, reviewed by J. Dawson * Seafloor Hydrothermal Systems, J. M. Edmond. Science, 1996, 271, 1507-1508.	6.0	7
98	Heme-Containing Oxygenases. Chemical Reviews, 1996, 96, 2841-2888.	23.0	2,264
99	Magnetic Circular Dichroism Spectroscopy as a Probe. Advances in Chemistry Series, 1996, , 351-371.	0.6	4
100	Ligation of the iron in the heme-heme oxygenase complex: X-ray absorption, electronic absorption and magnetic circular dichroism studies. BBA - Proteins and Proteomics, 1996, 1295, 165-173.	2.1	18
101	Characterization of a plant paraperoxidase from Curcurbita pepo using magnetic circular dichroism: direct evidence for cyanide ligation in the ferric resting state. Inorganica Chimica Acta, 1996, 243, 317-325.	1.2	2
102	Electron paramagnetic resonance spectroscopy as a probe of coordination structure in green heme systems: iron chlorins and iron formylporphyrins reconstituted into myoglobin. Inorganica Chimica Acta, 1995, 240, 603-608.	1.2	12
103	Identification of Nitric Oxide Synthase as a Thiolate-ligated Heme Protein Using Magnetic Circular Dichroism Spectroscopy. Journal of Biological Chemistry, 1995, 270, 19943-19948.	1.6	81
104	Uncoupling Oxygen Transfer and Electron Transfer in the Oxygenation of Camphor Analogues by Cytochrome P450-CAM. Journal of Biological Chemistry, 1995, 270, 28042-28048.	1.6	101
105	X-ray Absorption Near Edge Studies of Cytochrome P-450-CAM, Chloroperoxidase, and Myoglobin. Journal of Biological Chemistry, 1995, 270, 10544-10550.	1.6	39
106	Studies of the Heme Coordination and Ligand Binding Properties of Soluble Guanylyl Cyclase (sGC): Characterization of Fe(II)sGC and Fe(II)sGC(CO) by Electronic Absorption and Magnetic Circular Dichroism Spectroscopies and Failure of CO To Activate the Enzyme. Biochemistry, 1995, 34, 5896-5903.	1.2	140
107	Magnetic circular dichroism spectroscopy of zinc(II) tetraphenylporphyrin-ligand complexes: The effect of the axial ligand on spectral properties. Spectrochimica Acta Part A: Molecular Spectroscopy, 1994, 50, 493-507.	0.1	4
108	Iron Chlorin-Reconstituted Histidine-Ligated Heme Proteins as Models for Naturally Occurring Iron Chlorin Proteins: Magnetic Circular Dichroism Spectroscopy as a Probe of Iron Chlorin Coordination Structure. Inorganic Chemistry, 1994, 33, 5042-5049.	1.9	36

#	Article	IF	CITATIONS
109	The syntheses of 1R- and 1S-5-methylenylcamphor and their epoxidation by cytochrome P-450-CAM. Tetrahedron, 1993, 49, 9373-9384.	1.0	19
110	Imidazole- and alkylamine-ligated iron(II,III) chlorin complexes as models for histidine and lysine coordination to iron in dihydroporphyrin-containing proteins: characterization with magnetic circular dichroism spectroscopy. Inorganic Chemistry, 1993, 32, 1460-1466.	1.9	53
111	Intrasubstituent isotope effect studies of oxidative N-demethylations catalyzed by secondary amine monooxygenase. Comparison to cytochrome P-450. Journal of the American Chemical Society, 1992, 114, 3547-3549.	6.6	12
112	On the use of iron octa-alkylporphyrins as models for protoporphyrin IX-containing heme systems in studies employing magnetic circular dichroism spectroscopy. Journal of Inorganic Biochemistry, 1992, 45, 179-192.	1.5	38
113	Magnetic circular dichroism spectroscopy as a probe of axial heme ligand replacement in semisynthetic mutants of cytochromec. FEBS Letters, 1991, 290, 49-51.	1.3	11
114	The active site structure of E. coli HPII catalase. FEBS Letters, 1991, 295, 123-126.	1.3	24
115	Effects of cyanogen bromide modification of the distal histidine on the spectroscopic and ligand binding properties of myoglobin: magnetic circular dichroism spectroscopy as a probe of distal water ligation in ferric high-spin histidine-bound heme proteins. BBA - Proteins and Proteomics, 1991, 1080, 264-270.	2.1	28
116	Electron paramagnetic resonance investigations of exogenous ligand complexes of low-spin ferric chloroperoxidase: Further support for endogenous thiolate ligation to the heme iron. BBA - Proteins and Proteomics, 1991, 1078, 351-359.	2.1	24
117	EXAFS Spectroscopy of heme-containing oxygenases and peroxidases. Structure and Bonding, 1990, , 1-40.	1.0	27
118	Towards a unified concept of oxygen activation by heme enzymes: the role of the proximal ligand. Journal of Molecular Structure, 1989, 214, 149-158.	1.8	21
119	Magnetic circular dichroism studies of the active site structure of hemoprotein H-450: Comparison to cytochrome P-450 and sensitivity of pH effects. Biochemical and Biophysical Research Communications, 1989, 165, 1170-1176.	1.0	29
120	Direct observation of substrate binding to ferrous-CO cytochrome P-450-CAM using 19 F NMR. FEBS Letters, 1989, 254, 39-42.	1.3	7
121	Magnetic circular dichroism studies of a thiolate complex of zinc protoporphyrin. A non-iron hyperporphyrin model for ferrous-CO cytochrome P-450. Inorganica Chimica Acta, 1988, 151, 173-175.	1.2	6
122	Cytochrome P-450 and chloroperoxidase: thiolate-ligated heme enzymes. Spectroscopic determination of their active-site structures and mechanistic implications of thiolate ligation. Chemical Reviews, 1987, 87, 1255-1276.	23.0	530
123	Oxygenated cytochrome P-450-CAM and chloroperoxidase: direct evidence for sulfur donor ligation trans to dioxygen and structural characterization using EXAFS spectroscopy. Journal of the American Chemical Society, 1986, 108, 8114-8116.	6.6	47
124	Ligand and halide binding properties of chloroperoxidase: peroxidase-type active site heme environment with cytochrome P-450 type endogenous axial ligand and spectroscopic properties. Biochemistry, 1986, 25, 347-356.	1.2	108
125	Structural characterization of horseradish peroxidase using EXAFS spectroscopy. Evidence for Fe = O ligation in compounds I and II. Journal of the American Chemical Society, 1986, 108, 7819-7825.	6.6	263
126	Carbon-13 NMR spectra of nineteen (1R)-(+)-camphor derivatives. Magnetic Resonance in Chemistry, 1986, 24, 737-739.	1.1	9

#	Article	IF	CITATIONS
127	Spectroscopic evidence for the coordination of oxygen donor ligands to tetraphenylporphinatozinc. Inorganica Chimica Acta, 1986, 123, 9-13.	1.2	42
128	Models for ferrous cytochrome b5: Sign inversions in the magnetic circular dichroism spectra of bis-imidazole ferrous porphyrin systems. Inorganica Chimica Acta, 1986, 123, 83-86.	1.2	16
129	Characterization of the spleen green hemeprotein with magnetic and natural circular dichroism spectroscopy: positive evidence for a myeloperoxidase-type active site. BBA - Proteins and Proteomics, 1986, 873, 62-72.	2.1	19
130	A facile one-step synthesis of cis-dichlorobis(2,2′-bipyridine)osmium(II). Inorganica Chimica Acta, 1985, 97, L41.	1.2	11
131	Phosphine binding as a structural probe of the chloroperoxidase active site: spectroscopic evidence for endogenous thiolate ligation to the heme iron. Inorganic Chemistry, 1985, 24, 4339-4343.	1.9	21
132	The influence of oxygen donor ligation on the spectroscopic properties of ferric cytochrome P-450: Ester, ether and ketone co-ordination to the haem iron. Xenobiotica, 1984, 14, 49-61.	0.5	14
133	Bioinorganic applications of magnetic circular dichroism spectroscopy: Copper, rare-earth ions, cobalt and non-heme iron systems. Coordination Chemistry Reviews, 1984, 60, 1-66.	9.5	30
134	Extensive studies of the heme coordination structure of indoleamine 2,3-dioxygenase and of tryptophan binding with magnetic and natural circular dichroism and electron paramagnetic resonance spectroscopy. BBA - Proteins and Proteomics, 1984, 789, 170-187.	2.1	59
135	Circular dichroism studies of low-spin ferric cytochrome P-450CAM ligand complexes. BBA - Proteins and Proteomics, 1983, 748, 341-352.	2.1	24
136	Magnetic Circular Dichroism Spectroscopy as a Probe of Ferric Cytochrome P-450 and its Ligand Complexes. , 1983, , 369-376.		2
137	Use of magnetic circular dichroism to determine axial ligation for some sterically encumbered iron(II) porphyrin complexes. Journal of the American Chemical Society, 1981, 103, 5636-5648.	6.6	19
138	Spectroscopic studies of ascorbate oxidase. Electronic structure of blue copper sites. Biochemistry, 1981, 20, 2024-2028.	1.2	24
139	Spectroscopic studies of stellacyanin, plastocyanin, and azurin. Electronic structure of the blue copper sites. Journal of the American Chemical Society, 1980, 102, 168-178.	6.6	201
140	Spectroscopic studies of Rhus vernicifera and Polyporus versicolor laccase. Electronic structures of the copper sites. Journal of the American Chemical Society, 1979, 101, 5038-5046.	6.6	78
141	Spectroscopic studies of ceruloplasmin. Electronic structures of the copper sites. Journal of the American Chemical Society, 1979, 101, 5046-5053.	6.6	39
142	Studies of the ferric forms of cytochrome P-450 and chloroperoxidase by extended x-ray absotption fine structure. Characterization of the iron-nitrogen and iron-sulfur distances. Journal of the American Chemical Society, 1978, 100, 7282-7290.	6.6	140
143	Oxygenated cytochromeP-450cam: Evidence against axial histidine ligation of iron. FEBS Letters, 1978, 88, 127-130.	1.3	31
144	Magnetic circular dichroism studies. 51. Magnetic circular dichroism studies of non-iron "hyper" porphyrin complexes as models for reduced + carbon monoxide cytochrome P-450. Journal of the American Chemical Society, 1977, 99, 641-642.	6.6	16

#	Article	IF	CITATIONS
145	Magnetic circular dichroism of ferrous carbonyl adducts of cytochromes P-450 and P-420 and their synthetic models: further evidence for mercaptide as the fifth ligand to iron Proceedings of the National Academy of Sciences of the United States of America, 1976, 73, 6-10.	3.3	67
146	Magnetic circular dichroism studies XXXIV. Analytical Biochemistry, 1975, 65, 100-108.	1.1	16
147	A spectroscopic and chromatographic investigation of the behavior of 3-pentadecylcatechol (PDC) in various solvents under aerobic conditions. Analytical Biochemistry, 1975, 66, 340-352.	1.1	7
148	Magnetic Circular Dichroism Studies XXXV. A Comparison of Cytochromes P-450 and P-448. Proceedings of the National Academy of Sciences of the United States of America, 1974, 71, 4594-4597.	3.3	9