
Ileana Cornelia Farcasanu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4742155/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Insights into Structure and Biological Activity of Copper(II) and Zinc(II) Complexes with Triazolopyrimidine Ligands. Molecules, 2022, 27, 765.	1.7	1
2	Insight on spectral, thermal and biological behaviour of some Cu(II) complexes with saturated pentaazamacrocyclic ligands bearing amino acid residues. Journal of Thermal Analysis and Calorimetry, 2021, 143, 173-184.	2.0	0
3	Coffee and Yeasts: From Flavor to Biotechnology. Fermentation, 2021, 7, 9.	1.4	25
4	Saccharomyces cerevisiae Concentrates Subtoxic Copper onto Cell Wall from Solid Media Containing Reducing Sugars as Carbon Source. Bioengineering, 2021, 8, 36.	1.6	2
5	Antiproliferative and antibacterial properties of biocompatible copper(II) complexes bearing chelating N,N-heterocycle ligands and potential mechanisms of action. BioMetals, 2021, 34, 1155-1172.	1.8	6
6	Biological Activity of Triazolopyrimidine Copper(II) Complexes Modulated by an Auxiliary N-N-Chelating Heterocycle Ligands. Molecules, 2021, 26, 6772.	1.7	6
7	Cytotoxicity of Oleandrin Is Mediated by Calcium Influx and by Increased Manganese Uptake in Saccharomyces cerevisiae Cells. Molecules, 2020, 25, 4259.	1.7	4
8	Saccharomyces cerevisiae and Caffeine Implications on the Eukaryotic Cell. Nutrients, 2020, 12, 2440.	1.7	13
9	Copper(II) Complexes with Mixed Heterocycle Ligands as Promising Antibacterial and Antitumor Species. Molecules, 2020, 25, 3777.	1.7	18
10	Saccharomyces cerevisiae cells lacking transcription factors Skn7 or Yap1 exhibit different susceptibility to cyanidin. Heliyon, 2020, 6, e05352.	1.4	4
11	Interaction between Polyphenolic Antioxidants and Saccharomyces cerevisiae Cells Defective in Heavy Metal Transport across the Plasma Membrane. Biomolecules, 2020, 10, 1512.	1.8	8
12	Dietary Anthocyanins and Stroke: A Review of Pharmacokinetic and Pharmacodynamic Studies. Nutrients, 2019, 11, 1479.	1.7	49
13	A novel adaptive fluorescent probe for cell labelling. Bioorganic Chemistry, 2019, 92, 103295.	2.0	4
14	Pharmacological Aspects and Health Impact of Sports and Energy Drinks. , 2019, , 65-129.		5
15	Anthocyanins and Anthocyanin-Derived Products in Yeast-Fermented Beverages. Antioxidants, 2019, 8, 182.	2.2	19
16	Manganese Suppresses the Haploinsufficiency of Heterozygous trpy1î"/TRPY1 Saccharomyces cerevisiae Cells and Stimulates the TRPY1-Dependent Release of Vacuolar Ca2+ under H2O2 Stress. Cells, 2019, 8, 79.	1.8	5
17	Decorated Apatitic Materials: Synthesis, Characterization, and Potential Application. Proceedings (mdpi), 2019, 29, 33.	0.2	0
18	Enhancing the Microarray Signal Detection of Single Nucleotide Polymorphisms (SNPs) by Using Homemade Immobilisation Buffers. Revista De Chimie (discontinued), 2019, 70, 730-735.	0.2	0

Ileana Cornelia Farcasanu

#	Article	IF	CITATIONS
19	Specific detection of stable single nucleobase mismatch using SU-8 coated silicon nanowires platform. Talanta, 2018, 185, 281-290.	2.9	7
20	Accumulation of Ag(I) by Saccharomyces cerevisiae Cells Expressing Plant Metallothioneins. Cells, 2018, 7, 266.	1.8	10
21	Epigallocatechin-3-O-gallate, the main green tea component, is toxic to Saccharomyces cerevisiae cells lacking the Fet3/Ftr1. Food Chemistry, 2018, 266, 292-298.	4.2	5
22	Heavy metal accumulation by Saccharomyces cerevisiae cells armed with metal binding hexapeptides targeted to the inner face of the plasma membrane. Applied Microbiology and Biotechnology, 2017, 101, 5749-5763.	1.7	18
23	Optimization of detection parameters on microarray Au-support for genotyping HPV strains. , 2017, , .		0
24	Anchoring plant metallothioneins to the inner face of the plasma membrane of Saccharomyces cerevisiae cells leads to heavy metal accumulation. PLoS ONE, 2017, 12, e0178393.	1.1	15
25	Calcium signaling and copper toxicity in Saccharomyces cerevisiae cells. Environmental Science and Pollution Research, 2016, 23, 24514-24526.	2.7	18
26	Heat shock, visible light or high calcium augment the cytotoxic effects ofAilanthus altissima(Swingle) leaf extracts againstSaccharomyces cerevisiaecells. Natural Product Research, 2015, 29, 1744-1747.	1.0	5
27	Interaction between lanthanide ions and Saccharomyces cerevisiae cells. Journal of Biological Inorganic Chemistry, 2015, 20, 1097-1107.	1.1	15
28	Association of Leukotriene C4 Synthase A-444C Polymorphism with Asthma and Asthma Phenotypes in Romanian Population. Mædica, 2015, 10, 91-96.	0.4	0
29	Calcium signaling mediates the response to cadmium toxicity in <i>Saccharomyces cerevisiae</i> cells. FEBS Letters, 2014, 588, 3202-3212.	1.3	45
30	Vaccinium corymbosum L. (blueberry) extracts exhibit protective action against cadmium toxicity in Saccharomyces cerevisiae cells. Food Chemistry, 2014, 152, 516-521.	4.2	18
31	Optical manipulation of <i>Saccharomyces cerevisiae</i> cells reveals that green light protection against UV irradiation is favored by low Ca ²⁺ and requires intact UPR pathway. FEBS Letters, 2013, 587, 3514-3521.	1.3	5
32	Unexpected Formation of <i>N</i> -(1-(2-Aryl-hydrazono)isoindolin-2-yl)benzamides and Their Conversion into 1,2-(Bis-1,3,4-oxadiazol-2-yl)benzenes. Journal of Organic Chemistry, 2013, 78, 2670-2679.	1.7	23
33	Identification of [CuCl(acac)(tmed)], a copper(II) complex with mixed ligands, as a modulator of Cu,Zn superoxide dismutase (Sod1p) activity in yeast. Journal of Biological Inorganic Chemistry, 2012, 17, 961-974.	1.1	8
34	The Dual Action of Epigallocatechin Gallate (EGCG), the Main Constituent of Green Tea, against the Deleterious Effects of Visible Light and Singlet Oxygen-Generating Conditions as Seen in Yeast Cells. Molecules, 2012, 17, 10355-10369.	1.7	18
35	Hyperaccummulation: A Key to Heavy Metal Bioremediation. Soil Biology, 2012, , 251-278.	0.6	1
36	Overexpression of the PHO84 gene causes heavy metal accumulation and induces Ire1p-dependent unfolded protein response in Saccharomyces cerevisiae cells. Applied Microbiology and Biotechnology, 2012, 94, 425-435.	1.7	22

#	Article	lF	CITATIONS
37	The Role of Organic Matter in the Mobility of Metals in Contaminated Catchments. Soil Biology, 2012, , 297-325.	0.6	11
38	Dynamics of Inflammatory Markers in Post-Acute Stroke Patients Undergoing Rehabilitation. Inflammation, 2011, 34, 551-558.	1.7	14
39	Removing heavy metals from synthetic effluents using "kamikaze―Saccharomyces cerevisiae cells. Applied Microbiology and Biotechnology, 2010, 85, 763-771.	1.7	63
40	Exogenous oxidative stress induces Ca ²⁺ release in the yeast <i>Saccharomyces cerevisiae</i> . FEBS Journal, 2010, 277, 4027-4038.	2.2	61
41	Synthesis of fused dihydro-pyrimido[4,3-d]coumarins using Biginelli multicomponent reaction as key step. Tetrahedron, 2009, 65, 5949-5957.	1.0	39
42	Chemical and biological studies of <i>Ribes nigrum</i> L. buds essential oil. BioFactors, 2008, 34, 3-12.	2.6	11
43	The Antioxidant Response Induced by Lonicera caerulaea Berry Extracts in Animals Bearing Experimental Solid Tumors. Molecules, 2008, 13, 1195-1206.	1.7	25
44	Role ofL-Histidine in Conferring Tolerance to Ni2+inSacchromyces cerevisiaeCells. Bioscience, Biotechnology and Biochemistry, 2005, 69, 2343-2348.	0.6	14
45	Genetic Evidence for a Role of BiP/Kar2 That Regulates Ire1 in Response to Accumulation of Unfolded Proteins. Molecular Biology of the Cell, 2003, 14, 2559-2569.	0.9	188
46	Involvement of Thioredoxin Peroxidase Type II (Ahp1p) ofSaccharomyces cerevisiaein Mn2+Homeostasis. Bioscience, Biotechnology and Biochemistry, 1999, 63, 1871-1881.	0.6	15
47	Involvement of histidine permease (Hip1p) in manganese transport in Saccharomyces cerevisiae. Molecular Genetics and Genomics, 1998, 259, 541-548.	2.4	16
48	The Fate of Mn2+lons InsideSaccharomyces cerevisiaeCells Seen by Electron Paramagnetic Resonance. Bioscience, Biotechnology and Biochemistry, 1996, 60, 468-471.	0.6	6
49	Protein Phosphatase 2B of Saccharomyces Cerevisiae is Required for Tolerance to Manganese, in Blocking the Entry of ions into the Cells. FEBS Journal, 1995, 232, 712-717.	0.2	3
50	Protein Phosphatase 2B of <i>Saccharomyces Cerevisiae</i> is Required for Tolerance to Manganese, in Blocking the Entry of ions into the Cells. FEBS Journal, 1995, 232, 712-717.	0.2	27
51	Protein Phosphatase 2B of Saccharomyces Cerevisiae is Required for Tolerance to Manganese, in Blocking the Entry of ions into the Cells. FEBS Journal, 1995, 232, 712-717.	0.2	55
52	Calcium and Cell Response to Heavy Metals: Can Yeast Provide an Answer?. , 0, , .		10