Jochen Bundschuh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4741550/publications.pdf

Version: 2024-02-01

28190 39575 9,907 135 55 94 citations h-index g-index papers 143 143 143 8132 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	One century of arsenic exposure in Latin America: A review of history and occurrence from 14 countries. Science of the Total Environment, 2012, 429, 2-35.	3.9	414
2	Renewable energy-driven desalination technologies: A comprehensive review on challenges and potential applications of integrated systems. Desalination, 2015, 356, 94-114.	4.0	408
3	Antimony as a global dilemma: Geochemistry, mobility, fate and transport. Environmental Pollution, 2017, 223, 545-559.	3.7	331
4	Interaction of arsenic with biochar in soil and water: A critical review. Carbon, 2017, 113, 219-230.	5.4	292
5	Distribution and mobility of arsenic in the RÃo Dulce alluvial aquifers in Santiago del Estero Province, Argentina. Science of the Total Environment, 2006, 358, 97-120.	3.9	259
6	Possible treatments for arsenic removal in Latin American waters for human consumption. Environmental Pollution, 2010, 158, 1105-1118.	3.7	252
7	Arsenic speciation dynamics in paddy rice soil-water environment: sources, physico-chemical, and biological factors - A review. Water Research, 2018, 140, 403-414.	5.3	244
8	A critical review on arsenic removal from water using biochar-based sorbents: The significance of modification and redox reactions. Chemical Engineering Journal, 2020, 396, 125195.	6.6	243
9	Groundwater arsenic in the Chaco-Pampean Plain, Argentina. Applied Geochemistry, 2004, 19, 231-243.	1.4	227
10	Co-occurrence of arsenic and fluoride in groundwater of semi-arid regions in Latin America: Genesis, mobility and remediation. Journal of Hazardous Materials, 2013, 262, 960-969.	6.5	206
11	Natural Arsenic in Global Groundwaters: Distribution and Geochemical Triggers for Mobilization. Current Pollution Reports, 2016, 2, 68-89.	3.1	177
12	State-of-the-art of renewable energy sources used in water desalination: Present and future prospects. Desalination, 2021, 508, 115035.	4.0	164
13	A critical review of mercury speciation, bioavailability, toxicity and detoxification in soil-plant environment: Ecotoxicology and health risk assessment. Science of the Total Environment, 2020, 711, 134749.	3.9	153
14	Arsenic exposure in Latin America: Biomarkers, risk assessments and related health effects. Science of the Total Environment, 2012, 429, 76-91.	3.9	151
15	Arsenic and associated trace-elements in groundwater from the Chaco-Pampean plain, Argentina: Results from 100years of research. Science of the Total Environment, 2012, 429, 36-56.	3.9	151
16	Arsenic in the human food chain: the Latin American perspective. Science of the Total Environment, 2012, 429, 92-106.	3.9	147
17	Chemical evolution in the high arsenic groundwater of the Huhhot basin (Inner Mongolia, PR China) and its difference from the western Bengal basin (India). Applied Geochemistry, 2009, 24, 1835-1851.	1.4	138
18	Co-occurrence, possible origin, and health-risk assessment of arsenic and fluoride in drinking water sources in Mexico: Geographical data visualization. Science of the Total Environment, 2020, 698, 134168.	3.9	134

#	Article	IF	CITATIONS
19	Exploring the arsenic removal potential of various biosorbents from water. Environment International, 2019, 123, 567-579.	4.8	130
20	Arsenic in volcanic geothermal fluids of Latin America. Science of the Total Environment, 2012, 429, 57-75.	3.9	123
21	Iron-based subsurface arsenic removal technologies by aeration: A review of the current state and future prospects. Water Research, 2018, 133, 110-122.	5.3	120
22	Selective removal of arsenic in water: A critical review. Environmental Pollution, 2021, 268, 115668.	3.7	117
23	Assessment of arsenic exposure from groundwater and rice in Bengal Delta Region, West Bengal, India. Water Research, 2010, 44, 5803-5812.	5. 3	115
24	Emerging technologies for arsenic removal from drinking water in rural and peri-urban areas: Methods, experience from, and options for Latin America. Science of the Total Environment, 2019, 694, 133427.	3.9	113
25	Emerging mitigation needs and sustainable options for solving the arsenic problems of rural and isolated urban areas in Latin America – A critical analysis. Water Research, 2010, 44, 5828-5845.	5. 3	103
26	Biochar versus bone char for a sustainable inorganic arsenic mitigation in water: What needs to be done in future research?. Environment International, 2019, 127, 52-69.	4.8	101
27	Arsenic biogeochemical cycling in paddy soil-rice system: Interaction with various factors, amendments and mineral nutrients. Science of the Total Environment, 2021, 773, 145040.	3.9	100
28	Low-cost low-enthalpy geothermal heat for freshwater production: Innovative applications using thermal desalination processes. Renewable and Sustainable Energy Reviews, 2015, 43, 196-206.	8.2	98
29	Arsenic accumulation in rice (Oryza sativa L.) is influenced by environment and genetic factors. Science of the Total Environment, 2018, 642, 485-496.	3.9	98
30	Bone char as a green sorbent for removing health threatening fluoride from drinking water. Environment International, 2019, 127, 704-719.	4.8	97
31	Seven potential sources of arsenic pollution in Latin America and their environmental and health impacts. Science of the Total Environment, 2021, 780, 146274.	3.9	97
32	Microbial biotechnology as an emerging industrial wastewater treatment process for arsenic mitigation: A critical review. Journal of Cleaner Production, 2017, 151, 427-438.	4.6	92
33	Trace elements-induced phytohormesis: A critical review and mechanistic interpretation. Critical Reviews in Environmental Science and Technology, 2020, 50, 1984-2015.	6.6	92
34	Distribution of geogenic arsenic in hydrologic systems: Controls and challenges. Journal of Contaminant Hydrology, 2008, 99, 1-7.	1.6	90
35	Medical geology in the framework of the sustainable development goals. Science of the Total Environment, 2017, 581-582, 87-104.	3.9	90
36	Sources and controls for the mobility of arsenic in oxidizing groundwaters from loess-type sediments in arid/semi-arid dry climates – Evidence from the Chaco–Pampean plain (Argentina). Water Research, 2010, 44, 5589-5604.	5.3	88

#	Article	IF	CITATIONS
37	Geothermal arsenic: Occurrence, mobility and environmental implications. Renewable and Sustainable Energy Reviews, 2015, 42, 1214-1222.	8.2	88
38	Arsenic-enriched aquifers: Occurrences and mobilization of arsenic in groundwater of Ganges Delta Plain, Barasat, West Bengal, India. Applied Geochemistry, 2010, 25, 1805-1814.	1.4	85
39	Arsenic in cooked rice foods: Assessing health risks and mitigation options. Environment International, 2019, 127, 584-591.	4.8	81
40	Health effects of arsenic exposure in Latin America: An overview of the past eight years of research. Science of the Total Environment, 2020, 710, 136071.	3.9	81
41	Hydrogeochemical controls on the mobility of arsenic, fluoride and other geogenic co-contaminants in the shallow aquifers of northeastern La Pampa Province in Argentina. Science of the Total Environment, 2020, 715, 136671.	3.9	80
42	Pilot study on arsenic removal from groundwater using a small-scale reverse osmosis systemâ€"Towards sustainable drinking water production. Journal of Hazardous Materials, 2016, 318, 671-678.	6.5	77
43	Inorganic arsenic species removal from water using bone char: A detailed study on adsorption kinetic and isotherm models using error functions analysis. Journal of Hazardous Materials, 2021, 405, 124112.	6.5	75
44	Implications of organic matter on arsenic mobilization into groundwater: Evidence from northwestern (Chapai-Nawabganj), central (Manikganj) and southeastern (Chandpur) Bangladesh. Water Research, 2010, 44, 5556-5574.	5. 3	71
45	Arsenic mobilization in the aquifers of three physiographic settings of West Bengal, India: Understanding geogenic and anthropogenic influences. Journal of Hazardous Materials, 2013, 262, 915-923.	6.5	70
46	Arsenic in Latin America: New findings on source, mobilization and mobility in human environments in 20 countries based on decadal research 2010-2020. Critical Reviews in Environmental Science and Technology, 2021, 51, 1727-1865.	6.6	70
47	Naturally occurring arsenic in terrestrial geothermal systems of western Anatolia, Turkey: Potential role in contamination of freshwater resources. Journal of Hazardous Materials, 2013, 262, 951-959.	6.5	69
48	Health risks for human intake of aquacultural fish: Arsenic bioaccumulation and contamination. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2011, 46, 1266-1273.	0.9	66
49	Arsenic in Latin America: A critical overview on the geochemistry of arsenic originating from geothermal features and volcanic emissions for solving its environmental consequences. Science of the Total Environment, 2020, 716, 135564.	3.9	65
50	A review of the distribution, sources, genesis, and environmental concerns of salinity in groundwater. Environmental Science and Pollution Research, 2020, 27, 41157-41174.	2.7	64
51	Mechanisms of arsenic enrichment in geothermal and petroleum reservoirs fluids in Mexico. Water Research, 2010, 44, 5605-5617.	5. 3	63
52	Effect of pyrolysis conditions on bone char characterization and its ability for arsenic and fluoride removal. Environmental Pollution, 2020, 262, 114221.	3.7	63
53	Plate tectonics influence on geogenic arsenic cycling: From primary sources to global groundwater enrichment. Science of the Total Environment, 2019, 683, 793-807.	3.9	60
54	Removal of fluoride from water through bacterial-surfactin mediated novel hydroxyapatite nanoparticle and its efficiency assessment: Adsorption isotherm, adsorption kinetic and adsorption Thermodynamics. Environmental Nanotechnology, Monitoring and Management, 2018, 9, 18-28.	1.7	58

#	Article	IF	CITATIONS
55	Use of low-enthalpy and waste geothermal energy sources to solve arsenic problems in freshwater production in selected regions of Latin America using a process membrane distillation – Research into model solutions. Science of the Total Environment, 2020, 714, 136853.	3.9	58
56	A remediation approach to chromium-contaminated water and soil using engineered biochar derived from peanut shell. Environmental Research, 2022, 204, 112125.	3.7	57
57	Arsenic and other trace elements in thermal springs and in cold waters from drinking water wells on the Bolivian Altiplano. Journal of South American Earth Sciences, 2015, 60, 10-20.	0.6	56
58	Mitigation of arsenic accumulation in rice: An agronomical, physico-chemical, and biological approach – A critical review. Critical Reviews in Environmental Science and Technology, 2020, 50, 31-71.	6.6	56
59	Arsenic removal from groundwater of the Chaco-Pampean Plain (Argentina) using natural geological materials as adsorbents. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2011, 46, 1297-1310.	0.9	54
60	Advanced application of nano-technological and biological processes as well as mitigation options for arsenic removal. Journal of Hazardous Materials, 2021, 405, 123885.	6.5	53
61	Constructed wetlands as a sustainable technology for wastewater treatment with emphasis on chromium-rich tannery wastewater. Journal of Hazardous Materials, 2022, 422, 126926.	6.5	52
62	Arsenite removal in groundwater treatment plants by sequential Permanganate―Ferric treatment. Journal of Water Process Engineering, 2018, 26, 221-229.	2.6	51
63	Geogenic arsenic and other trace elements in the shallow hydrogeologic system of Southern Poop \tilde{A}^3 Basin, Bolivian Altiplano. Journal of Hazardous Materials, 2013, 262, 924-940.	6.5	50
64	Arsenic enrichment in sediments and beaches of Brazilian coastal waters: A review. Science of the Total Environment, 2019, 681, 143-154.	3.9	50
65	Sources and behavior of arsenic and trace elements in groundwater and surface water in the Poop \tilde{A}^3 Lake Basin, Bolivian Altiplano. Environmental Earth Sciences, 2012, 66, 793-807.	1.3	47
66	Arbuscular mycorrhizal fungi-assisted phytoremediation of a lead-contaminated site. Science of the Total Environment, 2016, 572, 86-97.	3.9	47
67	Variety-specific arsenic accumulation in 44 different rice cultivars (O. sativa L.) and human health risks due to co-exposure of arsenic-contaminated rice and drinking water. Journal of Hazardous Materials, 2021, 407, 124804.	6.5	47
68	Microbe mediated immobilization of arsenic in the rice rhizosphere after incorporation of silica impregnated biochar composites. Journal of Hazardous Materials, 2020, 398, 123096.	6.5	46
69	Provenance and fate of arsenic and other solutes in the Chaco-Pampean Plain of the Andean foreland, Argentina: From perspectives of hydrogeochemical modeling and regional tectonic setting. Journal of Hydrology, 2014, 518, 300-316.	2.3	45
70	Thiolated arsenic in natural systems: What is current, what is new and what needs to be known. Environment International, 2018, 115, 370-386.	4.8	45
71	Arsenic mineral dissolution and possible mobilization in mineral–microbe–groundwater environment. Journal of Hazardous Materials, 2013, 262, 989-996.	6.5	44
72	The potential for reductive mobilization of arsenic [As(V) to As(III)] by OSBH ₂ (<i>Pseudomonas stutzeri</i>)) and OSBH ₅ (<i>Bacillus cereus</i>)) in an oil-contaminated site. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2011, 46, 1239-1246.	0.9	40

#	Article	IF	Citations
73	Combating soil salinity with combining saline agriculture and phytomanagement with salt-accumulating plants. Critical Reviews in Environmental Science and Technology, 2020, 50, 1085-1115.	6.6	40
74	Hydrogels: Novel materials for contaminant removal in waterâ€"A review. Critical Reviews in Environmental Science and Technology, 2021, 51, 1970-2014.	6.6	40
75	Hydrogeochemical reconnaissance of arsenic cycling and possible environmental risk in hydrothermal systems of Taiwan. Groundwater for Sustainable Development, 2017, 5, 1-13.	2.3	38
76	Role of organic matter and humic substances in the binding and mobility of arsenic in a Gangetic aquifer. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2011, 46, 1231-1238.	0.9	35
77	Arsenic bioaccessibility in a gold mining area: a health risk assessment for children. Environmental Geochemistry and Health, 2012, 34, 457-465.	1.8	35
78	Hydrogeochemical controls on arsenic mobility in an arid inland basin, Southeast of Iran: The role of alkaline conditions and salt water intrusion. Environmental Pollution, 2019, 249, 910-922.	3.7	35
79	Geochemical processes controlling mobilization of arsenic and trace elements in shallow aquifers and surface waters in the Antequera and Poop \tilde{A}^3 mining regions, Bolivian Altiplano. Journal of Hydrology, 2014, 518, 421-433.	2.3	34
80	Solar powered nanofiltration for drinking water production from fluoride-containing groundwater $\hat{a} \in \text{``A pilot}$ study towards developing a sustainable and low-cost treatment plant. Journal of Environmental Management, 2019, 231, 1263-1269.	3.8	32
81	Desalination of salty water using vacuum spray dryer driven by solar energy. Desalination, 2017, 404, 182-191.	4.0	30
82	Contrasting controls on hydrogeochemistry of arsenic-enriched groundwater in the homologous tectonic settings of Andean and Himalayan basin aquifers, Latin America and South Asia. Science of the Total Environment, 2019, 689, 1370-1387.	3.9	30
83	A comparative study on arsenic and humic substances in alluvial aquifers of Bengal delta plain (NW) Tj ETQq1 1 0 mobilization mechanisms. Environmental Geochemistry and Health, 2011, 33, 235-258.	.784314 r 1.8	gBT /Overlo 29
84	Arsenic-enriched groundwaters of India, Bangladesh and Taiwan—Comparison of hydrochemical characteristics and mobility constraints. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2011, 46, 1163-1176.	0.9	29
85	Geochemistry of naturally occurring arsenic in groundwater and surface-water in the southern part of the PoopA ³ Lake basin, Bolivian Altiplano. Groundwater for Sustainable Development, 2016, 2-3, 104-116.	2.3	29
86	Green technological approach to synthesis hydrophobic stable crystalline calcite particles with one-pot synthesis for oil–water separation during oil spill cleanup. Water Research, 2017, 123, 332-344.	5.3	28
87	Recent progress in radon-based monitoring as seismic and volcanic precursor: A critical review. Critical Reviews in Environmental Science and Technology, 2020, 50, 979-1012.	6.6	28
88	Global arsenic dilemma and sustainability. Journal of Hazardous Materials, 2022, 436, 129197.	6.5	28
89	Targeting arsenic-safe aquifers for drinking water supplies. Environmental Geochemistry and Health, 2010, 32, 307-315.	1.8	27
90	Handwashing with soap: A concern for overuse of water amidst the COVID-19 pandemic in Bangladesh. Groundwater for Sustainable Development, 2021, 13, 100561.	2.3	27

#	Article	IF	CITATIONS
91	Biogeochemical characteristics of Kuan-Tzu-Ling, Chung-Lun and Bao-Lai hot springs in southern Taiwan. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2011, 46, 1207-1217.	0.9	26
92	Low-enthalpy geothermal energy as a source of energy and integrated freshwater production in inland areas: Technological and economic feasibility. Desalination, 2018, 435, 35-44.	4.0	26
93	Plant growth promotion and enhanced uptake of Cd by combinatorial application of <i>Bacillus pumilus</i> and EDTA on <i>Zea mays</i> L International Journal of Phytoremediation, 2020, 22, 1372-1384.	1.7	26
94	Fabrication of biochar-based hybrid Ag nanocomposite from algal biomass waste for toxic dye-laden wastewater treatment. Chemosphere, 2022, 289, 133243.	4.2	26
95	Exploring synergies and tradeoffs: Energy, water, and economic implications of water reuse in rice-based irrigation systems. Applied Energy, 2014, 114, 889-900.	5.1	25
96	Potential of different AM fungi (native from As-contaminated and uncontaminated soils) for supporting Leucaena leucocephala growth in As-contaminated soil. Environmental Pollution, 2017, 224, 125-135.	3.7	24
97	Small-scale membrane-based arsenic removal for decentralized applications–Developing a conceptual approach for future utilization. Water Research, 2021, 196, 116978.	5.3	23
98	The geochemical characteristics of the mud liquids in the Wushanting and Hsiaokunshui Mud Volcano region in southern Taiwan: Implications of humic substances for binding and mobilization of arsenic. Journal of Geochemical Exploration, 2013, 128, 62-71.	1.5	22
99	Fabrication and evaluation of silica embedded and zerovalent iron composited biochars for arsenate removal from water. Environmental Pollution, 2020, 266, 115256.	3.7	22
100	Pennisetum giganteum: An emerging salt accumulating/tolerant non-conventional crop for sustainable saline agriculture and simultaneous phytoremediation. Environmental Pollution, 2020, 265, 114876.	3.7	22
101	A fast analytical protocol for simultaneous speciation of arsenic by Ultra-High Performance Liquid Chromatography (UHPLC) hyphenated to Inductively Coupled Plasma Mass Spectrometry (ICP-MS) as a modern advancement in liquid chromatography approaches. Talanta, 2020, 208, 120457.	2.9	21
102	Iron-based subsurface arsenic removal (SAR): Results of a long-term pilot-scale test in Vietnam. Water Research, 2020, 181, 115929.	5.3	21
103	An Assessment of Direct on-Farm Energy Use for High Value Grain Crops Grown under Different Farming Practices in Australia. Energies, 2015, 8, 13033-13046.	1.6	19
104	A novel BMSN (biologically synthesized mesoporous silica nanoparticles) material: synthesis using a bacteria-mediated biosurfactant and characterization. RSC Advances, 2021, 11, 32906-32916.	1.7	19
105	Arsenic ecotoxicology: The interface between geosphere, hydrosphere and biosphere. Journal of Hazardous Materials, 2013, 262, 883-886.	6.5	18
106	Application of natural citric acid sources and their role on arsenic removal from drinking water: A green chemistry approach. Journal of Hazardous Materials, 2013, 262, 1167-1175.	6.5	16
107	Depth-resolved abundance and diversity of arsenite-oxidizing bacteria in the groundwater of Beimen, a blackfoot disease endemic area of southwestern Taiwan. Water Research, 2013, 47, 6983-6991.	5.3	16
108	Linking geochemical processes in mud volcanoes with arsenic mobilization driven by organic matter. Journal of Hazardous Materials, 2013, 262, 980-988.	6.5	16

#	Article	IF	Citations
109	Assessment of submarine geothermal resources and development of tools to quantify their energy potentials for environmentally sustainable development. Journal of Cleaner Production, 2014, 83, 21-32.	4.6	16
110	Exogenous Melatonin Enhances Cd Tolerance and Phytoremediation Efficiency by Ameliorating Cd-Induced Stress in Oilseed Crops: A Review. Journal of Plant Growth Regulation, 2022, 41, 922-935.	2.8	16
111	Biotechnological approaches in agriculture and environmental management - bacterium Kocuria rhizophila 14ASP as heavy metal and salt- tolerant plant growth- promoting strain. Biologia (Poland), 2021, 76, 3091-3105.	0.8	16
112	Iron modification to silicon-rich biochar and alternative water management to decrease arsenic accumulation in rice (Oryza sativa L.). Environmental Pollution, 2021, 286, 117661.	3.7	16
113	Arsenic in geoenvironments of Nicaragua: Exposure, health effects, mitigation and future needs. Science of the Total Environment, 2020, 716, 136527.	3.9	15
114	Biogeochemical interactions among the arsenic, iron, humic substances, and microbes in mud volcanoes in southern Taiwan. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2011, 46, 1218-1230.	0.9	14
115	Water as key to the sustainable development goals of South Sudan – A water quality assessment of Eastern Equatoria State. Groundwater for Sustainable Development, 2019, 8, 255-270.	2.3	13
116	An integrated approach of rice hull biochar-alternative water management as a promising tool to decrease inorganic arsenic levels and to sustain essential element contents in rice. Journal of Hazardous Materials, 2021, 405, 124188.	6.5	13
117	Rice genotype's responses to arsenic stress and cancer risk: The effects of integrated birnessite-modified rice hull biochar-water management applications. Science of the Total Environment, 2021, 768, 144531.	3.9	10
118	Salicylic Acid Confers Salt Tolerance in Giant Juncao Through Modulation of Redox Homeostasis, Ionic Flux, and Bioactive Compounds: An Ionomics and Metabolomic Perspective of Induced Tolerance Responses. Journal of Plant Growth Regulation, 2022, 41, 1999-2019.	2.8	10
119	Arsenic-rich geothermal fluids as environmentally hazardous materials – A global assessment. Science of the Total Environment, 2022, 817, 152669.	3.9	10
120	Interrelationship of TOC, As, Fe, Mn, Al and Si in shallow alluvial aquifers in Chapai-Nawabganj, Northwestern Bangladesh: implication for potential source of organic carbon. Environmental Earth Sciences, 2011, 63, 955-967.	1.3	9
121	Assessing the Brazilian prevention value for soil arsenic: Effects on emergence and growth of plant species relevant to tropical agroecosystems. Science of the Total Environment, 2019, 694, 133663.	3.9	9
122	Groundwater arsenic: From genesis to sustainable remediation. Water Research, 2010, 44, 5511.	5.3	8
123	Arsenic in freshwater fish in the Chihuahua County water reservoirs (Mexico). Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2011, 46, 1283-1287.	0.9	8
124	Vertical geochemical variations and arsenic mobilization in the shallow alluvial aquifers of the Chapai-Nawabganj District, northwestern Bangladesh: implication of siderite precipitation. Environmental Earth Sciences, 2013, 68, 1255-1270.	1.3	8
125	Microbe-EDTA mediated approach in the phytoremediation of lead-contaminated soils using maize (<i>Zea mays</i> L.) plants. International Journal of Phytoremediation, 2021, 23, 1-12.	1.7	8
126	Value Proposition of Different Methods for Utilisation of Sugarcane Wastes. Energies, 2021, 14, 5483.	1.6	8

#	Article	IF	CITATIONS
127	Photocatalysis for arsenic removal from water: considerations for solar photocatalytic reactors. Environmental Science and Pollution Research, 2022, 29, 61594-61607.	2.7	7
128	Reducing conditions increased the mobilisation and hazardous effects of arsenic in a highly contaminated gold mine spoil. Journal of Hazardous Materials, 2022, 436, 129238.	6.5	7
129	Occurrence and behavior of arsenic in groundwater-aquifer system of irrigated areas. Science of the Total Environment, 2022, 838, 155991.	3.9	5
130	The global arsenic crisisâ€"a short introduction. Arsenic in the Environment, 2010, , 3-19.	0.0	3
131	Evaluating the Ability of Bone Char/nTiO2 Composite and UV Radiation for Simultaneous Oxidation and Adsorption of Arsenite. Sustainable Chemistry, 2022, 3, 19-34.	2.2	3
132	Arsenic contamination in groundwaters in Bangladesh and options of sustainable drinking water supplies. Arsenic in the Environment, 2010, , 21-35.	0.0	1
133	Assessing the most sensitive and reliable endpoints in plant growth tests to improve arsenic risk assessment. Science of the Total Environment, 2020, 708, 134753.	3.9	1
134	Foreword. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2011, 46, 1161-1162.	0.9	0
135	Environmental Toxicology in Addressing Public Health Challenges in East Asia. BioMed Research International, 2015, 2015, 1-2.	0.9	0