List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4741175/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	With our sincere thanks: Farewell to Manuela Simoni and welcome to Aleksander Giwercman. Andrology, 2022, 10, 5-5.	1.9	1
2	Andrology and humanities. Andrology, 2022, 10, 823-824.	1.9	1
3	Clinical Utility of Circulating Cell-Free DNA Mutations in Anaplastic Thyroid Carcinoma. Thyroid, 2021, 31, 1235-1243.	2.4	22
4	Novel Anaplastic Thyroid Cancer PDXs and Cell Lines: Expanding Preclinical Models of Genetic Diversity. Journal of Clinical Endocrinology and Metabolism, 2021, 106, e4652-e4665.	1.8	8
5	A High-throughput Approach to Identify Effective Systemic Agents for the Treatment of Anaplastic Thyroid Carcinoma. Journal of Clinical Endocrinology and Metabolism, 2021, 106, 2962-2978.	1.8	10
6	Andrology Awards 2019 and 2020. Andrology, 2021, 9, 1025-1026.	1.9	0
7	RAC1 Alterations Induce Acquired Dabrafenib Resistance in Association with Anaplastic Transformation in a Papillary Thyroid Cancer Patient. Cancers, 2021, 13, 4950.	1.7	13
8	Abstract P120: Novel in vitro targeted combination therapies for anaplastic thyroid cancer. , 2021, , .		0
9	Evaluation of Overall Survival in Patients With Anaplastic Thyroid Carcinoma, 2000-2019. JAMA Oncology, 2020, 6, 1397.	3.4	183
10	Rapid Evaluation of CRISPR Guides and Donors for Engineering Mice. Genes, 2020, 11, 628.	1.0	7
11	Acquired Secondary RAS Mutation in BRAF ^{V600E} -Mutated Thyroid Cancer Patients Treated with BRAF Inhibitors. Thyroid, 2020, 30, 1288-1296.	2.4	66
12	The COVIDâ€19 pandemics: Shall we expect andrological consequences? A call for contributions to ANDROLOGY. Andrology, 2020, 8, 528-529.	1.9	12
13	Undifferentiated spermatogonia regulate <i>Cyp26b1</i> expression through NOTCH signaling and drive germ cell differentiation. FASEB Journal, 2019, 33, 8423-8435.	0.2	22
14	Regulation of GDNF expression in Sertoli cells. Reproduction, 2019, 157, R95-R107.	1.1	27
15	Src-mediated regulation of the PI3K pathway in advanced papillary and anaplastic thyroid cancer. Oncogenesis, 2018, 7, 23.	2.1	35
16	Circulating BRAF V600E Cell-Free DNA as a Biomarker in the Management of Anaplastic Thyroid Carcinoma. JCO Precision Oncology, 2018, 2, 1-11.	1.5	8
17	The Transcription Factor ETV5 Mediates BRAFV600E-Induced Proliferation and TWIST1 Expression in Papillary Thyroid Cancer Cells. Neoplasia, 2018, 20, 1121-1134.	2.3	32
18	Ponatinib Activates an Inflammatory Response in Endothelial Cells via ERK5 SUMOylation. Frontiers in Cardiovascular Medicine, 2018, 5, 125.	1.1	24

#	Article	IF	CITATIONS
19	Translational Research and Genomics Driven Trials in Thyroid Cancer. , 2018, , 319-338.		0
20	Neoadjuvant BRAF- and Immune-Directed Therapy for Anaplastic Thyroid Carcinoma. Thyroid, 2018, 28, 945-951.	2.4	111
21	The NOTCH Ligand JAG1 Regulates GDNF Expression in Sertoli Cells. Stem Cells and Development, 2017, 26, 585-598.	1.1	53
22	High-Content Analysis Provides Mechanistic Insights into the Testicular Toxicity of Bisphenol A and Selected Analogues in Mouse Spermatogonial Cells. Toxicological Sciences, 2017, 155, 43-60.	1.4	48
23	Molecular Mechanisms of Disease: The RET Proto-oncogene. , 2016, , 47-63.		0
24	The Sertoli cell: one hundred fifty years of beauty and plasticity. Andrology, 2016, 4, 189-212.	1.9	289
25	Long-term vemurafenib treatment drives inhibitor resistance through a spontaneous KRAS G12D mutation in a BRAF V600E papillary thyroid carcinoma model. Oncotarget, 2016, 7, 30907-30923.	0.8	52
26	Abstract 2933: Long-term BRAF(V600E) inhibition results in a spontaneous KRAS(G12D) mutation and increased epithelial to mesenchymal transition (EMT) in papillary thyroid cancer cells (PTC). , 2016, , .		0
27	Thyroid C-Cell Biology and Oncogenic Transformation. Recent Results in Cancer Research, 2015, 204, 1-39.	1.8	39
28	Hepatocyte Growth Factor/cMET Pathway Activation Enhances Cancer Hallmarks in Adrenocortical Carcinoma. Cancer Research, 2015, 75, 4131-4142.	0.4	38
29	RBPJ in mouse Sertoli cells is required for proper regulation of the testis stem cell niche. Development (Cambridge), 2014, 141, 4468-4478.	1.2	57
30	Sub-acute intravenous administration of silver nanoparticles in male mice alters Leydig cell function and testosterone levels. Reproductive Toxicology, 2014, 45, 59-70.	1.3	79
31	Stem Cells and Nanomaterials. Advances in Experimental Medicine and Biology, 2014, 811, 255-275.	0.8	19
32	Cell‣aden Hydrogels in Integrated Microfluidic Devices for Longâ€Term Cell Culture and Tubulogenesis Assays. Small, 2013, 9, 3076-3081.	5.2	4
33	Constitutive activation of NOTCH1 signaling in Sertoli cells causes gonocyte exit from quiescence. Developmental Biology, 2013, 377, 188-201.	0.9	72
34	Bone Metastases and Skeletal-Related Events in Patients With Malignant Pheochromocytoma and Sympathetic Paraganglioma. Journal of Clinical Endocrinology and Metabolism, 2013, 98, 1492-1497.	1.8	94
35	NOTCH signaling in Sertoli cells regulates gonocyte fate. Cell Cycle, 2013, 12, 2538-2545.	1.3	52
36	The Spermatogonial Stem Cell Niche in the Collared Peccary (Tayassu tajacu)1. Biology of Reproduction, 2012, 86, 155, 1-10.	1.2	32

#	Article	IF	CITATIONS
37	Spermatogonial Stem Cell Markers and Niche in Equids. PLoS ONE, 2012, 7, e44091.	1.1	52
38	Mono-(2-ethylhexyl)-phthalate (MEHP) affects ERK-dependent GDNF signalling in mouse stem-progenitor spermatogonia. Toxicology, 2012, 299, 10-19.	2.0	38
39	Isolation of Undifferentiated and Early Differentiating Type A Spermatogonia from Pou5f1-GFP Reporter Mice. Methods in Molecular Biology, 2012, 825, 31-44.	0.4	22
40	Generation of Capillary-Like Structures from Mouse Primary Spermatogonial Stem Cells in Defined Three-Dimensional Collagen Gels Biology of Reproduction, 2012, 87, 55-55.	1.2	3
41	Spermatogonial Stem Cell Niche in the Collared Peccary and Other Non-Model Vertebrates Biology of Reproduction, 2012, 87, 89-89.	1.2	3
42	Human spermatogonial stem cells: a possible origin for spermatocytic seminoma. Journal of Developmental and Physical Disabilities, 2011, 34, e296-305; discussion e305.	3.6	59
43	ETV5 Regulates Sertoli Cell Chemokines Involved in Mouse Stem/Progenitor Spermatogonia Maintenance Â. Stem Cells, 2010, 28, 1882-1892.	1.4	53
44	Age affects gene expression in mouse spermatogonial stem/progenitor cells. Reproduction, 2010, 139, 1011-1020.	1.1	35
45	Silver Nanoparticles Disrupt GDNF/Fyn kinase Signaling in Spermatogonial Stem Cells. Toxicological Sciences, 2010, 116, 577-589.	1.4	214
46	Differentiation of Stem/Progenitor Spermatogonia into Prostatic Epithelium: Direct or Indirect?. Biology of Reproduction, 2010, 83, 142-142.	1.2	0
47	Three-Dimensional Synthetic Niche Components to Control Germ Cell Proliferation. Tissue Engineering - Part A, 2009, 15, 255-262.	1.6	26
48	Loss of Etv5 Decreases Proliferation and RET Levels in Neonatal Mouse Testicular Germ Cells and Causes an Abnormal First Wave of Spermatogenesis1. Biology of Reproduction, 2009, 81, 258-266.	1.2	72
49	The Molecular Signature of Spermatogonial Stem/Progenitor Cells in the 6-Day-Old Mouse Testis1. Biology of Reproduction, 2009, 80, 707-717.	1.2	86
50	Claudin 5 Expression in Mouse Seminiferous Epithelium Is Dependent upon the Transcription Factor Ets Variant 5 and Contributes to Blood-Testis Barrier Function1. Biology of Reproduction, 2009, 81, 871-879.	1.2	88
51	Signaling pathways in spermatogonial stem cells and their disruption by toxicants. Birth Defects Research Part C: Embryo Today Reviews, 2009, 87, 35-42.	3.6	33
52	Direct Transdifferentiation of Stem/Progenitor Spermatogonia Into Reproductive and Nonreproductive Tissues of All Germ Layers. Stem Cells, 2009, 27, 1666-1675.	1.4	74
53	Stem cell potential of the mammalian gonad. Frontiers in Bioscience - Elite, 2009, E1, 510-518.	0.9	2
54	Gdnf Upregulates c-Fos Transcription via the Ras/Erk1/2 Pathway to Promote Mouse Spermatogonial Stem Cell Proliferation. Stem Cells, 2008, 26, 266-278.	1.4	207

#	Article	IF	CITATIONS
55	Regulation of the Spermatogonial Stem Cell Niche. Reproduction in Domestic Animals, 2008, 43, 386-392.	0.6	52
56	Gdnf signaling pathways within the mammalian spermatogonial stem cell niche. Molecular and Cellular Endocrinology, 2008, 288, 95-103.	1.6	203
57	Effects of ETV5 (Ets Variant Gene 5) on Testis and Body Growth, Time Course of Spermatogonial Stem Cell Loss, and Fertility in Mice1. Biology of Reproduction, 2008, 78, 483-489.	1.2	63
58	Signal Integration Within the Spermatogonial Stem Cell Niche Biology of Reproduction, 2008, 78, 234-234.	1.2	0
59	Gfra1 Silencing in Mouse Spermatogonial Stem Cells Results in Their Differentiation Via the Inactivation of RET Tyrosine Kinase1. Biology of Reproduction, 2007, 77, 723-733.	1.2	160
60	Role of Src family kinases and N-Myc in spermatogonial stem cell proliferation. Developmental Biology, 2007, 304, 34-45.	0.9	137
61	ETV5 Is Required for Continuous Spermatogenesis in Adult Mice and May Mediate Blood–Testes Barrier Function and Testicular Immune Privilege. Annals of the New York Academy of Sciences, 2007, 1120, 144-151.	1.8	46
62	NEUROTROPHIC FACTORS IN THE DEVELOPMENT OF THE POSTNATAL MALE GERM LINE. , 2007, , 149-184.		1
63	Mechanistic Insights into the Regulation of the Spermatogonial Stem Cell Niche. Cell Cycle, 2006, 5, 1164-1170.	1.3	79
64	Role of Glial Cell Line-Derived Neurotrophic Factor in Germ-Line Stem Cell Fate. Annals of the New York Academy of Sciences, 2005, 1061, 94-99.	1.8	43
65	Immortalization of Mouse Germ Line Stem Cells. Stem Cells, 2005, 23, 200-210.	1.4	119
66	ERM is required for transcriptional control of the spermatogonial stem cell niche. Nature, 2005, 436, 1030-1034.	13.7	292
67	In Vitro Cytotoxicity of Nanoparticles in Mammalian Germline Stem Cells. Toxicological Sciences, 2005, 88, 412-419.	1.4	1,106
68	Isolation of male germ-line stem cells; influence of GDNF. Developmental Biology, 2005, 279, 114-124.	0.9	312
69	Morphological Characterization of the Spermatogonial Subtypes in the Neonatal Mouse Testis1. Biology of Reproduction, 2003, 69, 1565-1571.	1.2	87
70	Establishment and characterization of neonatal mouse sertoli cell lines. Journal of Andrology, 2003, 24, 120-30.	2.0	10
71	An in Vitro Tubule Assay Identifies HGF as a Morphogen for the Formation of Seminiferous Tubules in the Postnatal Mouse Testis. Experimental Cell Research, 1999, 252, 175-185.	1.2	46
72	Refinement of the Differentiated Phenotype of the Spermatogenic Cell Line GC-2spd(ts)'1. Biology of Reproduction, 1996, 55, 923-932.	1.2	61

#	Article	IF	CITATIONS
73	Establishment of Meiotic Germ-Cell Lines and Their Use to Study Spermatogenesis In Vitro. , 1996, , 45-63.		0
74	A haploid and a diploid cell cycle coexist in an in vitro immortalized spermatogenic cell line. Genesis, 1995, 16, 119-127.	3.3	27
75	Immortalized germ cells undergo meiosis in vitro Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 5533-5537.	3.3	183
76	Genomic Structure and Promoter Activity of the Human Testis Lactate Dehydrogenase Gene1. Biology of Reproduction, 1993, 48, 1309-1319.	1.2	39
77	Developmental Expression of Alkaline Phosphatase Genes; Reexpression in Germ Cell Tumours and in vitro Immortalized Germ Cells. European Urology, 1993, 23, 38-45.	0.9	31
78	Immortalization of germ cells and somatic testicular cells using the SV40 large T antigen. Experimental Cell Research, 1992, 201, 417-435.	1.2	241
79	Sertoli Cell-Germ Cell Interactions Within the Niche: Paracrine and Juxtacrine Molecular Communications. Frontiers in Endocrinology, 0, 13, .	1.5	15