
Yoichi Tominaga

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/47406/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Glyme-based electrolytes: suitable solutions for next-generation lithium batteries. Green Chemistry, 2022, 24, 1021-1048.	4.6	28
2	Enhanced ionic conduction in composite polymer electrolytes filled with plant biomass "ligninâ€. Chemical Communications, 2022, 58, 4504-4507.	2.2	6
3	Enhanced Performance of Allâ€Solidâ€State Li Metal Battery Based on Polyether Electrolytes with LiNO ₃ Additive. Macromolecular Chemistry and Physics, 2022, 223, .	1.1	4
4	Polymer Electrolytes toward Nextâ€Generation Batteries. Macromolecular Chemistry and Physics, 2022, 223, .	1.1	7
5	Effect of plasticizer on the ion-conductive and dielectric behavior of poly(ethylene carbonate)-based Li electrolytes. Polymer Journal, 2021, 53, 149-155.	1.3	29
6	Phase Behavior, Ionic Conductivity, and Current-Voltage Response of Imogolite Gel Swelled in Ionic Liquid. Chemistry Letters, 2021, 50, 217-219.	0.7	3
7	Preparation and electrochemical characterization of magnesium gel electrolytes based on crosslinked Poly(tetrahydrofuran). Polymer, 2021, 224, 123743.	1.8	6
8	lonic transport and mechanical properties of slide-ring gel swollen with Mg-ion electrolytes. Ionics, 2020, 26, 255-261.	1.2	4
9	An alternative composite polymer electrolyte for high performances lithium battery. Journal of Power Sources, 2020, 449, 227508.	4.0	28
10	Polymer heatproofing mechanism of lignin extracted by simultaneous enzymatic saccharification and comminution. Polymer Degradation and Stability, 2020, 179, 109273.	2.7	5
11	Towards a Highâ€Performance Lithiumâ€Metal Battery with Glyme Solution and an Olivine Cathode. ChemElectroChem, 2020, 7, 2344-2344.	1.7	5
12	Towards a Highâ€Performance Lithiumâ€Metal Battery with Glyme Solution and an Olivine Cathode. ChemElectroChem, 2020, 7, 2376-2388.	1.7	11
13	Effect of Li salt addition on electrochemical properties of poly(ethylene carbonate)-Mg salt electrolytes. Polymer Journal, 2019, 51, 61-67.	1.3	5
14	Mechanical and degradation properties in alkaline solution of poly(ethylene carbonate)/poly(lactic) Tj ETQq0 0	0 rgBT /Ov	erlock 10 Tf 5
15	Random copolymers of ethylene carbonate and ethylene oxide for Li-Ion conductive solid electrolytes. Electrochimica Acta, 2019, 312, 342-348.	2.6	19
16	A concentrated poly(ethylene carbonate)/poly(trimethylene carbonate) blend electrolyte for all-solid-state Li battery. Polymer Journal, 2019, 51, 753-760.	1.3	18
17	Glyme-based electrolytes for lithium metal batteries using insertion electrodes: An electrochemical study. Electrochimica Acta, 2019, 306, 85-95.	2.6	14
18	An end-capped poly(ethylene carbonate)-based concentrated electrolyte for stable cyclability of lithium battery. Electrochimica Acta, 2019, 302, 286-290.	2.6	20

Υοιςμι Τομινάςα

#	Article	IF	CITATIONS
19	Structural and physicochemical properties of melt-quenched poly(ethylene carbonate)/poly(lactic) Tj ETQq1 1	0.784314 r 2.7	gBT_/Overloci
20	Magnesium ion-conductive poly(ethylene carbonate) electrolytes. Ionics, 2018, 24, 3475-3481.	1.2	31
21	Preparation and characterization of poly(ethylene carbonate)/poly(lactic acid) blends. Journal of Polymer Research, 2018, 25, 1.	1.2	10
22	Composite poly(ethylene carbonate) electrolytes with electrospun silica nanofibers. Polymers for Advanced Technologies, 2018, 29, 820-824.	1.6	12
23	A small amount of nanoparticulated plant biomass, lignin, enhances the heat tolerance of poly(ethylene carbonate). Journal of Materials Chemistry A, 2018, 6, 837-839.	5.2	22
24	Tuneable shape-memory properties of composites based on nanoparticulated plant biomass, lignin, and poly(ethylene carbonate). Soft Matter, 2018, 14, 9227-9231.	1.2	15
25	Understanding Electrochemical Stability and Lithium Ionâ€Dominant Transport in Concentrated Poly(ethylene carbonate) Electrolyte. ChemElectroChem, 2018, 5, 4008-4014.	1.7	37
26	Ion-conductive, Thermal and Electrochemical Properties of Poly(ethylene carbonate)-Mg Electrolytes with Glyme Solution. Chemistry Letters, 2018, 47, 1258-1261.	0.7	3
27	Ionâ€Conductive and Thermal Properties of a Synergistic Poly(ethylene carbonate)/Poly(trimethylene) Tj ETQq	1 1 0,7843	l 4 rgBT /Over
28	(Invited) Thixotropic Gel Electrolyte Consisting of Imogolite and Ionic Liquid. ECS Meeting Abstracts, 2018, , .	0.0	0
29	Ion-Conductive and Elastic Slide-Ring Gel Li Electrolytes Swollen with Ionic Liquid. Electrochimica Acta, 2017, 229, 166-172.	2.6	28
30	Ion-Conductive Properties of a Polymer Electrolyte Based on Ethylene Carbonate/Ethylene Oxide Random Copolymer. Macromolecular Rapid Communications, 2017, 38, 1600652.	2.0	61
31	lonic Liquid-Based Electrolytes Containing Surface-Functionalized Inorganic Nanofibers for Quasisolid Lithium Batteries. ACS Omega, 2017, 2, 835-841.	1.6	19
32	Ion-conductive polymer electrolytes based on poly(ethylene carbonate) and its derivatives. Polymer Journal, 2017, 49, 291-299.	1.3	103
33	Quasi-solid electrolyte: a thixotropic gel of imogolite and an ionic liquid. Chemical Communications, 2017, 53, 613-616.	2.2	20
34	Dielectric relaxation and ionic transport in poly(ethylene carbonate)â€based electrolytes. Polymers for Advanced Technologies, 2017, 28, 362-366.	1.6	13
35	Preparation and improvement in photovoltaic performance of dye-sensitized solar cells using carbon dioxide. Ionics, 2017, 23, 337-342.	1.2	0
36	Ionic Liquid-Containing Composite Poly(ethylene oxide) Electrolyte Reinforced by Electrospun Silica Nanofiber. Journal of the Electrochemical Society, 2017, 164, A3357-A3361.	1.3	13

#	Article	IF	CITATIONS
37	Ion-Conductive Properties of Propylene Carbonate/Propylene Oxide Copolymers. Kobunshi Ronbunshu, 2017, 74, 577-583.	0.2	1
38	Dispersed Structure of Filler and Properties of Vulcanized Natural Rubber,Isoprene Rubber and Deproteinized Natural Rubber Filled with Carbon Black. Nippon Gomu Kyokaishi, 2017, 90, 470-474.	0.0	0
39	Development of Novel Conductive Rubber Rollers using NBR/Polyether Electrolyte Blends with Nanoscale Sea-Island Phase Separation. Nippon Gomu Kyokaishi, 2017, 90, 23-29.	0.0	0
40	Effect of oxyethylene side chains on ion-conductive properties of polycarbonate-based electrolytes. Polymer, 2016, 84, 21-26.	1.8	60
41	Highly concentrated polycarbonateâ€based solid polymer electrolytes having extraordinary electrochemical stability. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 2442-2447.	2.4	48
42	Correlation between Solvation Structure and Ion-Conductive Behavior of Concentrated Poly(ethylene carbonate)-Based Electrolytes. Journal of Physical Chemistry C, 2016, 120, 12385-12391.	1.5	135
43	A highly-concentrated poly(ethylene carbonate)-based electrolyte for all-solid-state Li battery working at room temperature. Electrochemistry Communications, 2016, 66, 46-48.	2.3	152
44	Title is missing!. Electrochemistry, 2016, 84, 998-1002.	0.6	0
45	Dielectric Relaxation Behavior of a Poly(ethylene carbonate)â€Lithium Bisâ€{trifluoromethanesulfonyl) Imide Electrolyte. Macromolecular Chemistry and Physics, 2015, 216, 1660-1665.	1.1	45
46	Electrochemical properties of a poly(ethylene carbonate)-LiTFSI electrolyte containing a pyrrolidinium-based ionic liquid. Ionics, 2015, 21, 895-900.	1.2	49
47	Effect of Anions on Lithium Ion Conduction in Poly(ethylene carbonate)-based Polymer Electrolytes. Journal of the Electrochemical Society, 2015, 162, A3133-A3136.	1.3	110
48	Ionic Conductivity and Mechanical Properties of Slide-Ring Gel Swollen with Electrolyte Solution Including Lithium Ions. Electrochimica Acta, 2015, 169, 433-439.	2.6	11
49	A QuaternaryPoly(ethylene carbonate)-Lithium Bis(trifluoromethanesulfonyl)imide-Ionic Liquid-Silica Fiber Composite Polymer Electrolyte for Lithium Batteries. Electrochimica Acta, 2015, 175, 134-140.	2.6	73
50	Effect of nitrile groups on conductivity and morphology of NBR/polyether-based electrolyte blends for antistatic materials. Materials Today Communications, 2015, 4, 124-129.	0.9	8
51	Flow-Orientation of Internal Structure and Anisotropic Properties on Hydrogels Consisted of Imogolite Hollow Nanofibers. Journal of Fiber Science and Technology, 2014, 70, 137-144.	0.0	14
52	Effect of Anions on Lithium Ion Conduction in Poly(ethylene carbonate)-based Polymer Electrolytes. ECS Transactions, 2014, 62, 151-157.	0.3	3
53	Fast Li-ion conduction in poly(ethylene carbonate)-based electrolytes and composites filled with TiO ₂ nanoparticles. Chemical Communications, 2014, 50, 4448-4450.	2.2	263
54	Ion-conductive and mechanical properties of polyether/silica thin fiber composite electrolytes. Reactive and Functional Polymers, 2014, 81, 40-44.	2.0	13

#	Article	IF	CITATIONS
55	Proton-conducting composite membranes based on polybenzimidazole and sulfonated mesoporous organosilicate. International Journal of Hydrogen Energy, 2014, 39, 2724-2730.	3.8	19
56	Ion-conductive properties of polyether-based composite electrolytes filled with mesoporous silica, alumina and titania. Electrochimica Acta, 2013, 113, 361-365.	2.6	24
57	Dielectric relaxations and conduction mechanisms in polyether–clay composite polymer electrolytes under high carbon dioxide pressure. Physical Chemistry Chemical Physics, 2013, 15, 16626.	1.3	24
58	Anisotropic ionic conduction in composite polymer electrolytes filled with clays oriented by a strong magnetic field. Polymer Journal, 2013, 45, 738-743.	1.3	21
59	Nano-Ordered Sea-Island Phase Separation of Ion-Conductive Elastomer Blends Based on NBR and Polyether Electrolytes. E-Journal of Soft Materials, 2013, 9, 9-13.	2.0	2
60	Synthesis and Fundamental Properties of Carbon Dioxide/Alkylene Oxide Copolymers as Ion-Conductive Polymers. Kobunshi Ronbunshu, 2013, 70, 23-28.	0.2	8
61	Blend and Composite Materials based on Solid Polymer Electrolytes. Nippon Gomu Kyokaishi, 2012, 85, 93-100.	0.0	0
62	Improvement in dispersion and ionic conductivity of polyether/freeze-dried clay composites using supercritical carbon dioxide as treatment medium. Ionics, 2012, 18, 845-851.	1.2	5
63	Ionic conduction in poly(ethylene carbonate)-based rubbery electrolytes including lithium salts. Polymer Journal, 2012, 44, 1155-1158.	1.3	91
64	Poly(ethylene-co-vinyl alcohol)/sulfonated mesoporous organosilicate composites as proton-conductive membranes. Journal of Power Sources, 2012, 203, 42-47.	4.0	13
65	Blend & Composite Materials Based on Solid Polymer Electrolytes. International Polymer Science and Technology, 2012, 39, 1-10.	0.1	0
66	Utilization of carbon dioxide for polymer electrolytes [II]: Synthesis of alternating copolymers with glycidyl ethers as novel ion-conductive polymers. Electrochimica Acta, 2011, 57, 36-39.	2.6	61
67	Utilization of carbon dioxide for polymer electrolytes [I]: Effect of supercritical treatment conditions on ionic conduction in amorphous polyether/salt mixtures. Electrochimica Acta, 2011, 57, 176-179.	2.6	2
68	Alternating copolymers of carbon dioxide with glycidyl ethers for novel ion-conductive polymer electrolytes. Polymer, 2010, 51, 4295-4298.	1.8	105
69	Enhanced Cationic Conduction in a Polyether/Clay Composite Electrolyte Treated with Supercritical CO ₂ . Macromolecules, 2009, 42, 5422-5424.	2.2	12
70	Effect of Humidity on Ionic Conductivity of NBR/Polyether Electrolyte Blends with Microscale Sea-Island Phase Separation. Nippon Gomu Kyokaishi, 2009, 82, 499-506.	0.0	6
71	Hyperbranched-linear poly(ether sulfone) blend films for proton exchange membranes. Journal of Power Sources, 2008, 175, 120-126.	4.0	28
72	Ionic Conduction in Solid Polymer Electrolytes Using Carbon Dioxide as Solvent. Kobunshi Ronbunshu, 2008, 65, 525-535.	0.2	1

#	Article	IF	CITATIONS
73	Coupling of Hyperbranched and Linear Poly(Ether Sulfone)s in the Solid State. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2007, 20, 193-196.	0.1	1
74	Relation between Ionic Conductivity and Solubility of CO2in Pressurized Solid Polymer Electrolytes. Macromolecules, 2007, 40, 3348-3354.	2.2	8
75	Proton conduction in Nafion composite membranes filled with mesoporous silica. Journal of Power Sources, 2007, 171, 530-534.	4.0	96
76	Miscibility and hydrolytic degradation in alkaline solution of poly(l-lactide) and poly(p-vinyl phenol) blends. Polymer Degradation and Stability, 2007, 92, 1626-1631.	2.7	26
77	Structure and properties of highly stereoregular isotactic poly(methyl methacrylate) and syndiotactic poly(methyl methacrylate) blends treated with supercritical CO2. Polymer, 2007, 48, 5116-5124.	1.8	12
78	The effect of high-pressure carbon dioxide treatment on the crystallization behavior and mechanical properties of poly(l-lactic acid)/poly(methyl methacrylate) blends. Polymer, 2006, 47, 3954-3960.	1.8	35
79	Miscibility and hydrolytic degradation in alkaline solution of poly(l-lactide) and poly(methyl) Tj ETQq1 1 0.784314	∙rgBT /Ov 1.8	erlock 10 Tf 3
80	Low-frequency sound absorption of organic hybrid comprised of chlorinated polyethylene andN,N′-dicyclohexyl-2-benzothiazolyl sulfenamide. Journal of Applied Polymer Science, 2006, 99, 2878-2884.	1.3	0
81	Poly(ethylene oxide)-Based Composite Electrolytes Filled with Periodic Mesoporous Silica for Solid State Ionics. E-Journal of Soft Materials, 2005, 1, 14-19.	2.0	7
82	A novel composite polymer electrolyte: Effect of mesoporous SiO2 on ionic conduction in poly(ethylene oxide)–LiCF3SO3 complex. Journal of Power Sources, 2005, 146, 402-406.	4.0	97
83	lonic conductivity studies of poly(ethylene oxide)–lithium salt electrolytes in high-pressure carbon dioxide. Polymer, 2005, 46, 8113-8118.	1.8	9
84	Ion-conductive properties of mesoporous silica-filled composite polymer electrolytes. Electrochimica Acta, 2005, 50, 3949-3954.	2.6	22
85	Resistivity control in the semiconductive region for carbon-black-filled polymer composites. Colloid and Polymer Science, 2005, 283, 367-374.	1.0	9
86	Relationship between electrical resistivity and particle dispersion state for carbon black filled poly (ethylene-co-vinyl acetate)/poly (L-lactic acid) blend. Colloid and Polymer Science, 2005, 284, 134-141.	1.0	50
87	An approach to one-dimensional conductive polymer composites. Journal of Polymer Science, Part B: Polymer Physics, 2005, 43, 184-189.	2.4	40
88	A study on correlation between physical properties and interfacial characteristics in highly loaded graphite-polymer composites. Journal of Polymer Science, Part B: Polymer Physics, 2005, 43, 2568-2577.	2.4	31
89	Specific ionic conduction in poly[oligo (oxyethylene glycol) methacrylate] (PMEO)-Li salt complexes under high-pressure CO2. Journal of Polymer Science, Part B: Polymer Physics, 2005, 43, 3151-3158.	2.4	6
90	Dielectric relaxation behavior of poly(methyl methacrylate) under high-pressure carbon dioxide. Journal of Polymer Science, Part B: Polymer Physics, 2005, 43, 2951-2962.	2.4	15

#	Article	IF	CITATIONS
91	Viscoelasticity and morphology of an organic hybrid of chlorinated polyethylene and N,N′-dicyclohexyl-2-benzothiazolyl sulfenamide. Composite Interfaces, 2005, 12, 637-653.	1.3	2
92	Fast Ionic Conduction in PEO-Based Composite Electrolyte Filled with Ionic Liquid-Modified Mesoporous Silica. Electrochemical and Solid-State Letters, 2005, 8, A22.	2.2	31
93	Characterization of Higher-Order Structure of Poly(ethylene-2,6-naphthalate) Treated with Supercritical Carbon Dioxide. Macromolecules, 2005, 38, 6544-6550.	2.2	27
94	Interfacial behavior of epichlorohydrin-ethyleneoxide-allylglycidyl ether/fluorinated carbon black observed from mechanical and dielectrical properties. Journal of Applied Polymer Science, 2004, 91, 2928-2933.	1.3	6
95	Effect of reaction kinetics of polymer electrolyte on the ion-conductive behavior for poly(oligo) Tj ETQq1 1 0.784	314.rgBT / 1.3	Oyerlock 10
96	Dynamic percolation phenomenon of poly(methyl methacrylate)/surface fluorinated carbon black composite. Journal of Applied Polymer Science, 2003, 89, 1151-1155.	1.3	25
97	Improvement of the ionic conductivity for amorphous polyether electrolytes using supercritical CO2 treatment technology. Electrochimica Acta, 2003, 48, 1991-1995.	2.6	14
98	In situ study of ionic conductivity for polyether–LiCF3SO3 electrolytes with subcritical and supercritical CO2. Polymer, 2003, 44, 4769-4772.	1.8	11
99	AC complex impedance measurement of comb-like type polyether electrolytes under high-pressure carbon dioxide. Electrochimica Acta, 2003, 48, 4069-4075.	2.6	11
100	Effect of Supercritical Carbon Dioxide Processing on Ionic Association and Conduction in a Crystalline Poly(ethylene oxide)â^'LiCF3SO3Complex. Macromolecules, 2003, 36, 8766-8772.	2.2	37
101	The Effect of Supercritical CO2 on the Macromolecules Parallel Conformation and Its Relation to the Electrical Conductivity and Dielectric Behavior of Epichlorohydrin Terpolymer. Journal of Macromolecular Science - Physics, 2003, 42, 1021-1038.	0.4	0
102	Damping performance of polymer blend/organic filler hybrid materials with selective compatibility. Materials Letters, 2002, 52, 96-99.	1.3	35
103	Improvement of the ionic conductivity for PEO–LiCF3SO3 complex by supercritical CO2 treatment. Materials Letters, 2002, 57, 777-780.	1.3	13
104	Characterization of the vibrational damping loss factor and viscoelastic properties of ethylene-propylene rubbers reinforced with micro-scale fillers. Journal of Applied Polymer Science, 2001, 82, 3058-3066.	1.3	34
105	Ionic conductivity of PPO-sulfonamide salt hybrids and their network polymers. Polymers for Advanced Technologies, 2000, 11, 524-528.	1.6	16
106	Lithium ion conduction in linear- and network-type polymers of PEO/sulfonamide salt hybrid. Electrochimica Acta, 2000, 45, 3081-3086.	2.6	34
107	Effect of added salt species on the ionic conductivity of PEO/sulfonamide salt hybrids. Electrochimica Acta, 2000, 45, 1285-1289.	2.6	36
108	High ionic conductivity of PEO/sulfonamide salt hybrids. Solid State Ionics, 1999, 124, 323-329.	1.3	14

#	Article	IF	CITATIONS
109	Improved Ionic Conductivity of PEO/Sulfonamide Lithium Salt Hybrid by the Addition of LiTFSI. Chemistry Letters, 1998, 27, 955-956.	0.7	12
110	Polyether/salt hybrid: 6. Effect of sulfonamide ends having different alkyl groups on the bulk ionic conductivity. Polymer, 1997, 38, 1949-1951.	1.8	32
111	Polyether/salt hybrid (IV). Effect of benzenesulfonate group(s) and PEO molecular weight on the bulk ionic conductivity. Electrochimica Acta, 1997, 42, 1561-1570.	2.6	52
112	Effect of terminal groups on the ionic conductivity of α,ω-dicharged poly(ethylene oxide) oligomers. Solid State Ionics, 1996, 86-88, 325-328.	1.3	21
113	Polymer heat-proofing using defibered plants obtained by wet-type bead milling of Japanese cedar. Polymer Journal, 0, , .	1.3	4
114	Thermal, Mechanical and Ionâ€Conductive Properties of Crosslinked Poly[(ethylene carbonate)―co â€{ethylene oxide)]â€Lithium Bis(fluorosulfonyl)Imide Electrolytes. Macromolecular Chemistry and Physics, 0, , 2100327.	1.1	3