Adriana Renzoni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4740130/publications.pdf

Version: 2024-02-01

516561 28 808 citations papers

501076 16 28 g-index h-index

28 28 docs citations all docs

28 1182 times ranked citing authors

#	Article	IF	CITATIONS
1	MazF toxin causes alterations in <i>Staphylococcus aureus</i> transcriptome, translatome and proteome that underlie bacterial dormancy. Nucleic Acids Research, 2021, 49, 2085-2101.	6.5	14
2	The Role of ArlRS and VraSR in Regulating Ceftaroline Hypersusceptibility in Methicillin-Resistant Staphylococcus aureus. Antibiotics, 2021, 10, 821.	1.5	5
3	Hydrogen Peroxide Affects Growth of S. aureus Through Downregulation of Genes Involved in Pyrimidine Biosynthesis. Frontiers in Immunology, 2021, 12, 673985.	2.2	10
4	Insights into the global effect on Staphylococcus aureus growth arrest by induction of the endoribonuclease MazF toxin. Nucleic Acids Research, 2020, 48, 8545-8561.	6.5	9
5	YjbH Solubility Controls Spx in Staphylococcus aureus: Implication for MazEF Toxin-Antitoxin System Regulation. Frontiers in Microbiology, 2020, 11, 113.	1.5	10
6	Linking toxin-antitoxin systems with phenotypes: A Staphylococcus aureus viewpoint. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2019, 1862, 742-751.	0.9	13
7	Thermosensitive PBP2a requires extracellular folding factors PrsA and HtrA1 for Staphylococcus aureus MRSA \hat{l}^2 -lactam resistance. Communications Biology, 2019, 2, 417.	2.0	21
8	Sub-Inhibitory Doses of Individual Constituents of Essential Oils Can Select for Staphylococcus aureus Resistant Mutants. Molecules, 2019, 24, 170.	1.7	16
9	Whole-Genome Sequencing and Genetic Analysis Reveal Novel Stress Responses to Individual Constituents of Essential Oils in Escherichia coli. Applied and Environmental Microbiology, 2018, 84, .	1.4	16
	Molecular Bases Determining Daptomycin Resistance-Mediated Resensitization to \hat{I}^2 -Lactams (Seesaw) Tj ETQc	ΛΛΛ κ~DT	10 1 1 0 0
10	61,.	1.4	Overlock 10 54
10			
	61, . Antimicrobial activity of ceftaroline against methicillin-resistant Staphylococcus aureus (MRSA) isolates collected in 2013–2014 at the Geneva University Hospitals. European Journal of Clinical	1.4	54
11	Antimicrobial activity of ceftaroline against methicillin-resistant Staphylococcus aureus (MRSA) isolates collected in 2013–2014 at the Geneva University Hospitals. European Journal of Clinical Microbiology and Infectious Diseases, 2017, 36, 343-350. Rifampin Resistance ⟨i>rpoB⟨/i> Alleles or Multicopy Thioredoxin/Thioredoxin Reductase Suppresses the Lethality of Disruption of the Global Stress Regulator ⟨i>spx⟨/i> in Staphylococcus aureus.	1.3	54 15
11 12	Antimicrobial activity of ceftaroline against methicillin-resistant Staphylococcus aureus (MRSA) isolates collected in 2013–2014 at the Geneva University Hospitals. European Journal of Clinical Microbiology and Infectious Diseases, 2017, 36, 343-350. Rifampin Resistance ⟨i>rpoB⟨ i> Alleles or Multicopy Thioredoxin/Thioredoxin Reductase Suppresses the Lethality of Disruption of the Global Stress Regulator ⟨i>spx⟨ i⟩ in Staphylococcus aureus. Journal of Bacteriology, 2016, 198, 2719-2731. The Staphylococcus aureus Chaperone PrsA Is a New Auxiliary Factor of Oxacillin Resistance Affecting	1.4	1523
11 12 13	Antimicrobial activity of ceftaroline against methicillin-resistant Staphylococcus aureus (MRSA) isolates collected in 2013–2014 at the Geneva University Hospitals. European Journal of Clinical Microbiology and Infectious Diseases, 2017, 36, 343-350. Rifampin Resistance <i>rpoB</i> Alleles or Multicopy Thioredoxin/Thioredoxin Reductase Suppresses the Lethality of Disruption of the Global Stress Regulator <i>spx</i> in Staphylococcus aureus. Journal of Bacteriology, 2016, 198, 2719-2731. The Staphylococcus aureus Chaperone PrsA Is a New Auxiliary Factor of Oxacillin Resistance Affecting Penicillin-Binding Protein 2A. Antimicrobial Agents and Chemotherapy, 2016, 60, 1656-1666. Missense Mutations in PBP2A Affecting Ceftaroline Susceptibility Detected in Epidemic Hospital-Acquired Methicillin-Resistant Staphylococcus aureus Clonotypes ST228 and ST247 in	1.4 1.3 1.0	152360
11 12 13 14	Antimicrobial activity of ceftaroline against methicillin-resistant Staphylococcus aureus (MRSA) isolates collected in 2013â6°2014 at the Geneva University Hospitals. European Journal of Clinical Microbiology and Infectious Diseases, 2017, 36, 343-350. Rifampin Resistance <i>>rpoB</i> > Alleles or Multicopy Thioredoxin/Thioredoxin Reductase Suppresses the Lethality of Disruption of the Global Stress Regulator <i>>spx</i> > in Staphylococcus aureus. Journal of Bacteriology, 2016, 198, 2719-2731. The Staphylococcus aureus Chaperone PrsA Is a New Auxiliary Factor of Oxacillin Resistance Affecting Penicillin-Binding Protein 2A. Antimicrobial Agents and Chemotherapy, 2016, 60, 1656-1666. Missense Mutations in PBP2A Affecting Ceftaroline Susceptibility Detected in Epidemic Hospital-Acquired Methicillin-Resistant Staphylococcus aureus Clonotypes ST228 and ST247 in Western Switzerland Archived since 1998. Antimicrobial Agents and Chemotherapy, 2015, 59, 1922-1930. The Staphylococcus aureus Thiol/Oxidative Stress Global Regulator Spx Controls <i>trfA</i> > , a Gene Implicated in Cell Wall Antibiotic Resistance. Antimicrobial Agents and Chemotherapy, 2013, 57,	1.4 1.3 1.0 1.4	5415236076
11 12 13 14	Antimicrobial activity of ceftaroline against methicillin-resistant Staphylococcus aureus (MRSA) isolates collected in 2013–2014 at the Geneva University Hospitals. European Journal of Clinical Microbiology and Infectious Diseases, 2017, 36, 343-350. Rifampin Resistance <i>rpoB</i> Alleles or Multicopy Thioredoxin/Thioredoxin Reductase Suppresses the Lethality of Disruption of the Global Stress Regulator <i>spx</i> in Staphylococcus aureus. Journal of Bacteriology, 2016, 198, 2719-2731. The Staphylococcus aureus Chaperone PrsA Is a New Auxiliary Factor of Oxacillin Resistance Affecting Penicillin-Binding Protein 2A. Antimicrobial Agents and Chemotherapy, 2016, 60, 1656-1666. Missense Mutations in PBP2A Affecting Ceftaroline Susceptibility Detected in Epidemic Hospital-Acquired Methicillin-Resistant Staphylococcus aureus Clonotypes ST228 and ST247 in Western Switzerland Archived since 1998. Antimicrobial Agents and Chemotherapy, 2015, 59, 1922-1930. The Staphylococcus aureus Thiol/Oxidative Stress Global Regulator Spx Controls <i>trfA</i> a Gene Implicated in Cell Wall Antibiotic Resistance. Antimicrobial Agents and Chemotherapy, 2013, 57, 3283-3292. Genetic Variation in the Staphylococcus aureus 8325 Strain Lineage Revealed by Whole-Genome	1.4 1.3 1.0 1.4 1.4	541523607640

#	Article	IF	CITATION
19	Prevalence of isolates with reduced glycopeptide susceptibility in orthopedic device-related infections due to methicillin-resistant Staphylococcus aureus. European Journal of Clinical Microbiology and Infectious Diseases, 2012, 31, 3367-3374.	1.3	13
20	Site-Specific Mutation of <i>Staphylococcus aureus</i> VraS Reveals a Crucial Role for the VraR-VraS Sensor in the Emergence of Glycopeptide Resistance. Antimicrobial Agents and Chemotherapy, 2011, 55, 1008-1020.	1.4	36
21	Whole Genome Sequencing and Complete Genetic Analysis Reveals Novel Pathways to Glycopeptide Resistance in Staphylococcus aureus. PLoS ONE, 2011, 6, e21577.	1.1	56
22	Underestimation of Vancomycin and Teicoplanin MICs by Broth Microdilution Leads to Underdetection of Glycopeptide-Intermediate Isolates of <i>Staphylococcus aureus</i> Antimicrobial Agents and Chemotherapy, 2010, 54, 3861-3870.	1.4	43
23	Control of the <i>Staphylococcus aureus</i> Toxic Shock <i>tst</i> Promoter by the Global Regulator SarA. Journal of Bacteriology, 2010, 192, 6077-6085.	1.0	41
24	Exploring innate glycopeptide resistance mechanisms in Staphylococcus aureus. Trends in Microbiology, 2010, 18, 55-56.	3.5	8
25	Increased Uptake and Improved Intracellular Survival of a Teicoplanin-Resistant Mutant of Methicillin-Resistant <i>Staphylococcus aureus</i> in Non-Professional Phagocytes. Chemotherapy, 2009, 55, 183-188.	0.8	12
26	Identification by Genomic and Genetic Analysis of Two New Genes Playing a Key Role in Intermediate Glycopeptide Resistance in <i>Staphylococcus aureus</i> . Antimicrobial Agents and Chemotherapy, 2009, 53, 903-911.	1.4	32
27	Comparative activity of oritavancin against meticillin-resistant Staphylococcus aureus (MRSA) bloodstream isolates from Geneva University Hospital. International Journal of Antimicrobial Agents, 2009, 34, 540-543.	1.1	4
28	Transcriptomic and Functional Analysis of an Autolysis-Deficient, Teicoplanin-Resistant Derivative of Methicillin-Resistant Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 2006, 50, 3048-3061.	1.4	47