
Adriana Renzoni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4740130/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Missense Mutations in PBP2A Affecting Ceftaroline Susceptibility Detected in Epidemic Hospital-Acquired Methicillin-Resistant Staphylococcus aureus Clonotypes ST228 and ST247 in Western Switzerland Archived since 1998. Antimicrobial Agents and Chemotherapy, 2015, 59, 1922-1930.	1.4	76
2	The Staphylococcus aureus Chaperone PrsA Is a New Auxiliary Factor of Oxacillin Resistance Affecting Penicillin-Binding Protein 2A. Antimicrobial Agents and Chemotherapy, 2016, 60, 1656-1666.	1.4	60
3	The Posttranslocational Chaperone Lipoprotein PrsA Is Involved in both Glycopeptide and Oxacillin Resistance in Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 2012, 56, 3629-3640.	1.4	59
4	Whole Genome Sequencing and Complete Genetic Analysis Reveals Novel Pathways to Glycopeptide Resistance in Staphylococcus aureus. PLoS ONE, 2011, 6, e21577.	1.1	56
5	Genetic Variation in the Staphylococcus aureus 8325 Strain Lineage Revealed by Whole-Genome Sequencing. PLoS ONE, 2013, 8, e77122.	1.1	54
6	Molecular Bases Determining Daptomycin Resistance-Mediated Resensitization to β-Lactams (Seesaw) Tj ETQqO 61, .	0 0 rgBT / 1.4	Overlock 10 54
7	Transcriptomic and Functional Analysis of an Autolysis-Deficient, Teicoplanin-Resistant Derivative of Methicillin-Resistant Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 2006, 50, 3048-3061.	1.4	47
8	Underestimation of Vancomycin and Teicoplanin MICs by Broth Microdilution Leads to Underdetection of Glycopeptide-Intermediate Isolates of <i>Staphylococcus aureus</i> . Antimicrobial Agents and Chemotherapy, 2010, 54, 3861-3870.	1.4	43
9	Control of the <i>Staphylococcus aureus</i> Toxic Shock <i>tst</i> Promoter by the Global Regulator SarA. Journal of Bacteriology, 2010, 192, 6077-6085.	1.0	41
10	The Staphylococcus aureus Thiol/Oxidative Stress Global Regulator Spx Controls <i>trfA</i> , a Gene Implicated in Cell Wall Antibiotic Resistance. Antimicrobial Agents and Chemotherapy, 2013, 57, 3283-3292.	1.4	40
11	Site-Specific Mutation of <i>Staphylococcus aureus</i> VraS Reveals a Crucial Role for the VraR-VraS Sensor in the Emergence of Glycopeptide Resistance. Antimicrobial Agents and Chemotherapy, 2011, 55, 1008-1020.	1.4	36
12	ldentification by Genomic and Genetic Analysis of Two New Genes Playing a Key Role in Intermediate Glycopeptide Resistance in <i>Staphylococcus aureus</i> . Antimicrobial Agents and Chemotherapy, 2009, 53, 903-911.	1.4	32
13	Rifampin Resistance <i>rpoB</i> Alleles or Multicopy Thioredoxin/Thioredoxin Reductase Suppresses the Lethality of Disruption of the Global Stress Regulator <i>spx</i> in Staphylococcus aureus. Journal of Bacteriology, 2016, 198, 2719-2731.	1.0	23
14	High Prevalence of Isolates with Reduced Glycopeptide Susceptibility in Persistent or Recurrent Bloodstream Infections Due to Methicillin-Resistant Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 2012, 56, 1258-1264.	1.4	21
15	Thermosensitive PBP2a requires extracellular folding factors PrsA and HtrA1 for Staphylococcus aureus MRSA β-lactam resistance. Communications Biology, 2019, 2, 417.	2.0	21
16	Whole-Genome Sequencing and Genetic Analysis Reveal Novel Stress Responses to Individual Constituents of Essential Oils in Escherichia coli. Applied and Environmental Microbiology, 2018, 84, .	1.4	16
17	Sub-Inhibitory Doses of Individual Constituents of Essential Oils Can Select for Staphylococcus aureus Resistant Mutants. Molecules, 2019, 24, 170.	1.7	16
18	Antimicrobial activity of ceftaroline against methicillin-resistant Staphylococcus aureus (MRSA) isolates collected in 2013–2014 at the Geneva University Hospitals. European Journal of Clinical Microbiology and Infectious Diseases, 2017, 36, 343-350.	1.3	15

Adriana Renzoni

#	Article	IF	CITATIONS
19	MazF toxin causes alterations in <i>Staphylococcus aureus</i> transcriptome, translatome and proteome that underlie bacterial dormancy. Nucleic Acids Research, 2021, 49, 2085-2101.	6.5	14
20	Prevalence of isolates with reduced glycopeptide susceptibility in orthopedic device-related infections due to methicillin-resistant Staphylococcus aureus. European Journal of Clinical Microbiology and Infectious Diseases, 2012, 31, 3367-3374.	1.3	13
21	Linking toxin-antitoxin systems with phenotypes: A Staphylococcus aureus viewpoint. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2019, 1862, 742-751.	0.9	13
22	Increased Uptake and Improved Intracellular Survival of a Teicoplanin-Resistant Mutant of Methicillin-Resistant <i>Staphylococcus aureus</i> in Non-Professional Phagocytes. Chemotherapy, 2009, 55, 183-188.	0.8	12
23	YjbH Solubility Controls Spx in Staphylococcus aureus: Implication for MazEF Toxin-Antitoxin System Regulation. Frontiers in Microbiology, 2020, 11, 113.	1.5	10
24	Hydrogen Peroxide Affects Growth of S. aureus Through Downregulation of Genes Involved in Pyrimidine Biosynthesis. Frontiers in Immunology, 2021, 12, 673985.	2.2	10
25	Insights into the global effect on Staphylococcus aureus growth arrest by induction of the endoribonuclease MazF toxin. Nucleic Acids Research, 2020, 48, 8545-8561.	6.5	9
26	Exploring innate glycopeptide resistance mechanisms in Staphylococcus aureus. Trends in Microbiology, 2010, 18, 55-56.	3.5	8
27	The Role of ArlRS and VraSR in Regulating Ceftaroline Hypersusceptibility in Methicillin-Resistant Staphylococcus aureus. Antibiotics, 2021, 10, 821.	1.5	5
28	Comparative activity of oritavancin against meticillin-resistant Staphylococcus aureus (MRSA) bloodstream isolates from Geneva University Hospital. International Journal of Antimicrobial Agents, 2009, 34, 540-543.	1.1	4