
Alexander V Sorokin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/473959/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Optical Spectroscopy on Individualamphi-PIC J-Aggregates. Nano Letters, 2005, 5, 2635-2640.	9.1	70
2	Anomalous Surfactant-Induced Enhancement of Luminescence Quantum Yield of Cyanine Dye J-Aggregates. Journal of Physical Chemistry C, 2008, 112, 14762-14768.	3.1	56
3	Metal-Enhanced Fluorescence of Pseudoisocyanine J-Aggregates Formed in Layer-by-Layer Assembled Films. Journal of Physical Chemistry C, 2015, 119, 2743-2751.	3.1	53
4	Plasmon Controlled Exciton Fluorescence of Molecular Aggregates. Journal of Physical Chemistry C, 2014, 118, 7599-7605.	3.1	39
5	Evidence of Exciton Self-Trapping in Pseudoisocyanine J-Aggregates Formed in Layered Polymer Films. Journal of Physical Chemistry C, 2015, 119, 27865-27873.	3.1	34
6	Features of exciton dynamics in molecular nanoclusters (<i>J</i> -aggregates): Exciton self-trapping (Review Article). Low Temperature Physics, 2016, 42, 429-440.	0.6	31
7	Pseudoisocyanine J-Aggregate to Optical Waveguiding Crystallite Transition:Â Microscopic and Microspectroscopic Exploration. Journal of Physical Chemistry B, 2006, 110, 17772-17775.	2.6	30
8	Control of Exciton Migration Efficiency in Disordered <i>J</i> -Aggregates. Journal of Physical Chemistry C, 2010, 114, 1299-1305.	3.1	29
9	Dark Reactive Oxygen Species Generation in ReVO ₄ :Eu ³⁺ (Re = Gd, Y) Nanoparticles in Aqueous Solutions. Journal of Physical Chemistry C, 2020, 124, 3843-3850.	3.1	29
10	Specificity of Cyanine Dye L-21 Aggregation in Solutions with Nucleic Acids. Journal of Fluorescence, 2007, 17, 370-376.	2.5	27
11	Coherent Mechanism of Exciton Transport in Disordered J-Aggregates. Journal of Physical Chemistry C, 2009, 113, 12883-12887.	3.1	23
12	Exciton Dynamics and Self-Trapping of Carbocyanine J-Aggregates in Polymer Films. Journal of Physical Chemistry C, 2019, 123, 9428-9444.	3.1	23
13	Squaraine Dye as an Exciton Trap for Cyanine J-Aggregates in a Solution. Journal of Physical Chemistry C, 2008, 112, 20458-20462.	3.1	21
14	GdVO4:Eu3+ nanoparticles – Methylene Blue complexes for PDT: Electronic excitation energy transfer study. Journal of Luminescence, 2017, 192, 975-981.	3.1	19
15	Janus-Faced Redox Activity of LnVO ₄ :Eu ³⁺ (Ln = Gd, Y, and La) Nanoparticles. Journal of Physical Chemistry C, 2019, 123, 15323-15329.	3.1	19
16	Strong difference between optical properties and morphologies for J-Aggregates of similar cyanine dyes. Dyes and Pigments, 2018, 152, 49-53.	3.7	18
17	Synthesis and characterization of mesoporous CaCO3@PSS microspheres as a depot system for sustained Methylene Blue delivering. Microporous and Mesoporous Materials, 2016, 236, 120-128.	4.4	17

Photo-induced reorganization of molecular packing of amphi-PIC J-aggregates (single J-aggregate) Tj ETQq0 0 0 rgB $\frac{1}{3}$. [Overlock 10 Tf 50]

Alexander V Sorokin

#	Article	IF	CITATIONS
19	Hydrophobicity effect on interactions between organic molecules in nanocages of surfactant micelle. Journal of Applied Spectroscopy, 2008, 75, 658-663.	0.7	14
20	J-type aggregation of squaraine dye Sq-2Me in surfactant solutions. Journal of Molecular Liquids, 2012, 165, 113-118.	4.9	13
21	Molecular Arrangement in Cyanine Dye J-Aggregates Formed on CeO ₂ Nanoparticles. Journal of Physical Chemistry C, 2018, 122, 20996-21003.	3.1	12
22	Control of optical properties of polymethine dye J-aggregates using different additives. Journal of Applied Spectroscopy, 2009, 76, 234-239.	0.7	8
23	Manifestation of Exciton-Lattice Interaction in J-Aggregates. Molecular Crystals and Liquid Crystals, 2011, 535, 57-63.	0.9	8
24	Antioxidant-related gene polymorphisms associated with the cardio-ankle vascular index in young Russians. Cardiology in the Young, 2016, 26, 677-682.	0.8	8
25	Nano-scale control of energy transfer in the system "donor–acceptor― Journal of Luminescence, 2005, 112, 439-443.	3.1	7
26	Excitation localization effects in nanoscale molecular clusters (J-aggregates). Low Temperature Physics, 2011, 37, 157-162.	0.6	7
27	Control of electron–lattice interaction in organic nanoclusters. Optical Materials, 2012, 34, 2008-2011.	3.6	7
28	Exciton transport in amphi-PIC J-aggregates formed in polymer films. Optical Materials, 2012, 34, 2091-2094.	3.6	7
29	Effect of hydrophobicity of cationic carbocyanine dyes DiOC n on their binding to anionic surfactant micelles. Journal of Applied Spectroscopy, 2010, 77, 183-188.	0.7	6
30	Configuration of organic dye excimers in nanoporous SiO 2 matrices. Journal of Luminescence, 2016, 179, 171-177.	3.1	6
31	Co-existence of free and self-trapped excitons in J-aggregates. Journal of Luminescence, 2005, 112, 424-428.	3.1	5
32	Spectroscopic study of interactions between dye molecules in micelle and liposome nanovolumes. Journal of Applied Spectroscopy, 2013, 79, 914-921.	0.7	5
33	Untangling the Mechanisms of GdYVO4:Eu3+ nanoparticle Photocatalytic Activity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 577, 630-636.	4.7	5
34	Plasmon-Induced Suppression of Exciton Self-Trapping in Polymer-Bound Pseudoisocyanine J-Aggregates. Journal of Physical Chemistry C, 2020, 124, 10167-10174.	3.1	5
35	Influence of pseudoisocyanine J-aggregate agglomeration on the optical properties. Functional Materials, 2018, 25, 088-092.	0.1	5
36	Influence of Dye Hydrophobicity on the Efficiency of Fluorescence Resonance Energy Transfer Between Dyes in Surfactant Micelles. Molecular Crystals and Liquid Crystals, 2011, 535, 204-211.	0.9	4

Alexander V Sorokin

#	Article	IF	CITATIONS
37	Association of matrix metalloproteinase 3 and γ-glutamyltransferase 1 gene polymorphisms with the cardio-ankle vascular index in young Russians. Cardiology in the Young, 2016, 26, 1238-1240.	0.8	4
38	Plasmon enhancement of thiacyanine J-aggregates luminescence in polymer films. Functional Materials, 2015, 22, 316-321.	0.1	4
39	Features of J-aggregates formation in pores of nanostructured anodic aluminum oxide. Functional Materials, 2014, 21, 42-46.	0.1	4
40	Interaction between molecular aggregates placed into thin layered films. Molecular Crystals and Liquid Crystals, 2023, 753, 61-72.	0.9	4
41	Enhanced electronic excitation energy transfer between dye molecules incorporated in nano-scale media with apparent fractal dimensionality. Applied Physics A: Materials Science and Processing, 2014, 116, 2131-2138.	2.3	3
42	Modification of the luminescent characteristics belonging to the molecule that interacts with the exciton states of the <i>J</i> -aggregate. Low Temperature Physics, 2017, 43, 416-420.	0.6	3
43	Porous CaCO 3 carriers loaded with scintillation nanoparticles and photosensitizer molecules for photodynamic activation. Microporous and Mesoporous Materials, 2018, 263, 128-134.	4.4	3
44	Unusual enhancement of dye luminescence by exciton resonance of J-Aggregates. Optical Materials, 2019, 96, 109263.	3.6	3
45	Impact of Eu3+ Ions on Pro-oxidant Activity of ReVO4:Eu3+ Nanocrystals. Journal of Physical Chemistry C, 2021, 125, 1564-1569.	3.1	3
46	Nano-scale liposomal container with a «signal system» for substances delivering in living cells. Biopolymers and Cell, 2011, 27, 47-52.	0.4	3
47	Dynamics of dye release from nanocarriers of different types in model cell membranes and living cells. Biopolymers and Cell, 2014, 30, 314-320.	0.4	3
48	Metal enhanced fluorescence of thiacyanine dye in layered polymer films. Functional Materials, 2014, 21, 409-413.	0.1	3
49	Photobleaching of LnVO4:Eu3+ nanoparticles under UV-light irradiation: Effect of nanoparticle size. Journal of Luminescence, 2022, 242, 118593.	3.1	3
50	Study of exciton transport in luminescent molecular nanoclusters using energy traps. Theoretical and Experimental Chemistry, 2009, 45, 58-62.	0.8	2
51	Manipulation by optical properties of luminescent ordered organic nanoclusters via exciton-phonon coupling. Journal of Physics: Conference Series, 2012, 345, 012047.	0.4	2
52	Fluorescence of cyanine dye excimers in nanoporous silica. Functional Materials, 2015, 22, 207-211.	0.1	2
53	UV-Light-Activated (Gd,Y)VO ₄ :Eu ³⁺ Nanoparticles for Radiotherapy Enhancement. Journal of Physical Chemistry C, 2022, 126, 9371-9377.	3.1	2
54	Features of low-temperature exciton dynamics inJ-aggregates with topological disorder. Low Temperature Physics, 2003, 29, 679-681.	0.6	1

#	Article	IF	CITATIONS
55	Nonradiative energy transfer in carbocyanine dye compositions inside surfactant micelles. Journal of Applied Spectroscopy, 2006, 73, 164-170.	0.7	1
56	Using cyanine dye J-aggregates as luminescence probe for nanostructured media. Functional Materials, 2017, 24, 005-392.	0.1	1
57	In vitro study of NCs/dyes complexes accumulation and dyes release kinetics in rat hepatocytes. Functional Materials, 2015, 22, 199-206.	0.1	1
58	Kinetic and Thermodynamic Stability of Organic and Inorganic Nanocarriers. Journal of Applied Spectroscopy, 2015, 82, 200-207.	0.7	0
59	GdVO ₄ :Eu ³⁺ nanoparticles - embedded CaCO ₃ microspheres: synthesis and characterization. Functional Materials, 2017, 24, 005-399.	0.1	Ο
60	Plasmon-Enhanced Fluorescence of Carbocyanine J-Aggregates in Layered Polymer Films. , 2020, , .		0