Peter B Madrid

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4739221/publications.pdf

Version: 2024-02-01

37 papers

1,961 citations

218592 26 h-index 35 g-index

47 all docs

47 docs citations

47 times ranked

3086 citing authors

#	Article	IF	CITATIONS
1	Mega-High-Throughput Screening Platform for the Discovery of Biologically Relevant Sequence-Defined Non-Natural Polymers. ACS Central Science, 2022, 8, 86-101.	5.3	2
2	The Antiviral Drug Tilorone Is a Potent and Selective Inhibitor of Acetylcholinesterase. Chemical Research in Toxicology, 2021, 34, 1296-1307.	1.7	15
3	Repurposing the Ebola and Marburg Virus Inhibitors Tilorone, Quinacrine, and Pyronaridine: <i>In Vitro</i> Activity against SARS-CoV-2 and Potential Mechanisms. ACS Omega, 2021, 6, 7454-7468.	1.6	56
4	Machine Learning Models Identify Inhibitors of SARS-CoV-2. Journal of Chemical Information and Modeling, 2021, 61, 4224-4235.	2.5	31
5	UV-adVISor: Attention-Based Recurrent Neural Networks to Predict UV–Vis Spectra. Analytical Chemistry, 2021, 93, 16076-16085.	3 . 2	9
6	Pyronaridine tetraphosphate efficacy against Ebola virus infection in guinea pig. Antiviral Research, 2020, 181, 104863.	1.9	16
7	Repurposing Pyramax $\hat{A}^{@}$, quinacrine and tilorone as treatments for Ebola virus disease. Antiviral Research, 2020, 182, 104908.	1.9	20
8	Tilorone: a Broad-Spectrum Antiviral Invented in the USA and Commercialized in Russia and beyond. Pharmaceutical Research, 2020, 37, 71.	1.7	39
9	Tilorone, a Broad-Spectrum Antiviral for Emerging Viruses. Antimicrobial Agents and Chemotherapy, 2020, 64, .	1.4	32
10	Repurposing Quinacrine against Ebola Virus Infection In Vivo. Antimicrobial Agents and Chemotherapy, 2019, 63, .	1.4	30
11	Ebola Virus Bayesian Machine Learning Models Enable New in Vitro Leads. ACS Omega, 2019, 4, 2353-2361.	1.6	49
12	The Natural Product Eugenol Is an Inhibitor of the Ebola Virus In Vitro. Pharmaceutical Research, 2019, 36, 104.	1.7	47
13	Repurposing the antimalarial pyronaridine tetraphosphate to protect against Ebola virus infection. PLoS Neglected Tropical Diseases, 2019, 13, e0007890.	1.3	42
14	Efficacy of Tilorone Dihydrochloride against Ebola Virus Infection. Antimicrobial Agents and Chemotherapy, 2018, 62, .	1.4	51
15	Evaluation of Ebola Virus Inhibitors for Drug Repurposing. ACS Infectious Diseases, 2015, 1, 317-326.	1.8	209
16	Machine learning models identify molecules active against the Ebola virus in vitro. F1000Research, 2015, 4, 1091.	0.8	56
17	Machine learning models identify molecules active against the Ebola virus in vitro. F1000Research, 2015, 4, 1091.	0.8	80
18	A Systematic Screen of FDA-Approved Drugs for Inhibitors of Biological Threat Agents. PLoS ONE, 2013, 8, e60579.	1.1	223

#	Article	IF	CITATIONS
19	Discovery and Optimization of Benzotriazine Di- <i>N</i> -Oxides Targeting Replicating and Nonreplicating Mycobacterium tuberculosis. Journal of Medicinal Chemistry, 2012, 55, 6047-6060.	2.9	22
20	Evaluation of gyrase B as a drug target in Mycobacterium tuberculosis. Journal of Antimicrobial Chemotherapy, 2012, 67, 415-421.	1.3	87
21	Systematic discovery of synergistic novel antibiotic combinations targeting multidrug-resistant Acinetobacter baumannii. International Journal of Antimicrobial Agents, 2012, 40, 377-379.	1.1	3
22	Acylideneoxoindoles: A new class of reversible inhibitors of human transglutaminase 2. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 2692-2696.	1.0	58
23	Identification of antimicrobial activity among FDA-approved drugs for combating Mycobacterium abscessus and Mycobacterium chelonae. Journal of Antimicrobial Chemotherapy, 2011, 66, 1533-1536.	1.3	63
24	A High-Throughput Fluorescence Polarization Assay for Inhibitors of Gyrase B. Journal of Biomolecular Screening, 2011, 16, 230-238.	2.6	12
25	SU11248 (sunitinib) directly inhibits the activity of mammalian 5'-AMP-activated protein kinase (AMPK). Cancer Biology and Therapy, 2010, 10, 68-76.	1.5	38
26	Development of a New Generation of 4-Aminoquinoline Antimalarial Compounds Using Predictive Pharmacokinetic and Toxicology Models. Journal of Medicinal Chemistry, 2010, 53, 3685-3695.	2.9	50
27	Repurposing FDA-approved drugs to combat drug-resistant Acinetobacter baumannii. Journal of Antimicrobial Chemotherapy, 2010, 65, 2598-2601.	1.3	41
28	Synthesis and antitubercular activity of phenothiazines with reduced binding to dopamine and serotonin receptors. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 3014-3017.	1.0	59
29	Activity of piperaquine and other 4-aminoquinoline antiplasmodial drugs against chloroquine-sensitive and resistant blood-stages of Plasmodium falciparum. Biochemical Pharmacology, 2007, 73, 1910-1926.	2.0	78
30	Incorporation of an Intramolecular Hydrogen-Bonding Motif in the Side Chain of 4-Aminoquinolines Enhances Activity against Drug-Resistant P. falciparum. Journal of Medicinal Chemistry, 2006, 49, 4535-4543.	2.9	76
31	Structure–activity relationship study of 9-aminoacridine compounds in scrapie-infected neuroblastoma cells. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 4913-4916.	1.0	29
32	Synthesis and Testing of a Focused Phenothiazine Library for Binding to HIV-1 TAR RNA. Chemistry and Biology, 2006, 13, 993-1000.	6.2	68
33	Parallel synthesis of 9-aminoacridines and their evaluation against chloroquine-resistant Plasmodium falciparum. Bioorganic and Medicinal Chemistry, 2006, 14, 334-343.	1.4	74
34	Synthesis of ring-substituted 4-aminoquinolines and evaluation of their antimalarial activities. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 1015-1018.	1.0	103
35	Synthesis of Ring-Substituted 4-Aminoquinolines and Evaluation of Their Antimalarial Activities ChemInform, 2005, 36, no.	0.1	0
36	Parallel Synthesis and Antimalarial Screening of a 4-Aminoquinoline Library. ACS Combinatorial Science, 2004, 6, 437-442.	3.3	57

#	Article	lF	CITATIONS
37	Machine learning models identify molecules active against the Ebola virus in vitro. F1000Research, 0, 4, 1091.	0.8	14