Bożena Czech

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4739197/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The antioxidant defense responses of Hordeum vulgare L. to polycyclic aromatic hydrocarbons and their derivatives in biochar-amended soil. Environmental Pollution, 2022, 294, 118664.	3.7	8
2	Application of the engineered sewage sludge-derived biochar to minimize water eutrophication by removal of ammonium and phosphate ions from water. Journal of Cleaner Production, 2022, 331, 129994.	4.6	26
3	Facemask Global Challenges: The Case of Effective Synthesis, Utilization, and Environmental Sustainability. Sustainability, 2022, 14, 737.	1.6	15
4	Detoxifying SARS-CoV-2 antiviral drugs from model and real wastewaters by industrial waste-derived multiphase photocatalysts. Journal of Hazardous Materials, 2022, 429, 128300.	6.5	16
5	Revealing the toxicity of lopinavir- and ritonavir-containing water and wastewater treated by photo-induced processes to Danio rerio and Allivibrio fischeri. Science of the Total Environment, 2022, 824, 153967.	3.9	12
6	Screen-Printed Voltammetric Sensors—Tools for Environmental Water Monitoring of Painkillers. Sensors, 2022, 22, 2437.	2.1	14
7	Low bioavailability of derivatives of polycyclic aromatic hydrocarbons in biochar obtained from different feedstock. Environmental Research, 2022, 214, 113787.	3.7	9
8	Engineered biochars from organic wastes for the adsorption of diclofenac, naproxen and triclosan from water systems. Journal of Cleaner Production, 2021, 288, 125686.	4.6	73
9	Sustainable synthesis of rose flower-like magnetic biochar from tea waste for environmental applications. Journal of Advanced Research, 2021, 34, 13-27.	4.4	22
10	Transcriptional and biochemical response of barley to co-exposure of metal-based nanoparticles. Science of the Total Environment, 2021, 782, 146883.	3.9	13
11	Occurrence and toxicity of polycyclic aromatic hydrocarbons derivatives in environmental matrices. Science of the Total Environment, 2021, 788, 147738.	3.9	74
12	Sewage sludge and solid residues from biogas production derived biochar as an effective bio-waste adsorbent of fulvic acids from water or wastewater. Chemosphere, 2021, 278, 130447.	4.2	22
13	Formation of polycyclic aromatic hydrocarbons and their derivatives in biochars: The effect of feedstock and pyrolysis conditions. Journal of Analytical and Applied Pyrolysis, 2021, 160, 105339.	2.6	19
14	Structural, optical and catalytic properties of ZnO-SiO2 colored powders with the visible light-driven activity. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 421, 113532.	2.0	6
15	Sorption of pharmaceuticals and personal care products (PPCPs) onto a sustainable cotton based adsorbent. Sustainable Chemistry and Pharmacy, 2020, 18, 100324.	1.6	16
16	Ultrafast microwave assisted development of magnetic carbon microtube from cotton waste for wastewater treatment. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 606, 125449.	2.3	15
17	Effective photocatalytic removal of selected pharmaceuticals and personal care products by elsmoreite/tungsten oxide@ZnS photocatalyst. Journal of Environmental Management, 2020, 270, 110870.	3.8	24
18	SnO2@ZnS photocatalyst with enhanced photocatalytic activity for the degradation of selected pharmaceuticals and personal care products in model wastewater. Journal of Alloys and Compounds, 2020, 827, 154339.	2.8	64

Bożena Czech

#	Article	IF	CITATIONS
19	Impact of ZnO and ZnS nanoparticles in sewage sludge-amended soil on bacteria, plant and invertebrates. Chemosphere, 2019, 237, 124359.	4.2	25
20	Application of different carrying gases and ratio between sewage sludge and willow for engineered (smart) biochar production. Journal of CO2 Utilization, 2019, 29, 20-28.	3.3	56
21	Carbon dioxide as a carrier gas and biomass addition decrease the total and bioavailable polycyclic aromatic hydrocarbons in biochar produced from sewage sludge. Chemosphere, 2019, 228, 26-34.	4.2	36
22	Caffeine hinders the decomposition of acetaminophen over TiO2-SiO2 nanocomposites containing carbon nanotubes irradiated by visible light. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 376, 166-174.	2.0	9
23	Adsorption capacity of phenanthrene and pyrene to engineered carbon-based adsorbents produced from sewage sludge or sewage sludge-biomass mixture in various gaseous conditions. Bioresource Technology, 2019, 280, 421-429.	4.8	52
24	Sustainable carbon microtube derived from cotton waste for environmental applications. Chemical Engineering Journal, 2019, 361, 1605-1616.	6.6	32
25	The light enhanced removal of Bisphenol A from wastewater using cotton waste derived carbon microtubes. Journal of Colloid and Interface Science, 2019, 539, 425-432.	5.0	27
26	Sustainable periodically patterned carbon nanotube for environmental application: Introducing the cheetah skin structure. Journal of Cleaner Production, 2018, 179, 429-440.	4.6	23
27	Application of biochar to sewage sludge reduces toxicity and improve organisms growth in sewage sludge-amended soil in long term field experiment. Science of the Total Environment, 2018, 625, 8-15.	3.9	75
28	Visible-light-driven photocatalytic removal of acetaminophen from water using a novel MWCNT-TiO2-SiO2 photocatalysts. Separation and Purification Technology, 2018, 206, 343-355.	3.9	49
29	Impact of thermal treatment of calcium silicate-rich slag on the removal of cadmium from aqueous solution. Journal of Cleaner Production, 2018, 200, 369-379.	4.6	13
30	The effect of MWCNT treatment by H2O2 and/or UV on fulvic acids sorption. Environmental Research, 2017, 155, 1-6.	3.7	11
31	Development simple and sensitive voltammetric procedure for ultra-trace determination of U(VI). Talanta, 2017, 165, 474-481.	2.9	15
32	Synthesis and properties of zinc oxide photocatalyst by high-temperature processing of resorcinol-formaldehyde/zinc acetate mixture. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 334, 36-46.	2.0	20
33	The sorption of the nonsteroidal anti-inflammatory drugs diclofenac and naproxen onto UV and/or H ₂ O ₂ treated MWCNT-COOH and MWCNT-OH. RSC Advances, 2016, 6, 110383-110392.	1.7	9
34	Multicomponent nanocomposites for elimination of diclofenac in water based on an amorphous TiO 2 active in various light sources. Journal of Photochemistry and Photobiology A: Chemistry, 2016, 330, 64-70.	2.0	19
35	The interactions of UV and/or H2O2 treated CNTOH and CNTCOOH with environmental fulvic acids. Environmental Research, 2016, 150, 173-181.	3.7	4
36	UVA- and visible-light-driven photocatalytic activity of three-layer perovskite Dion-Jacobson phase CsBa2M3O10 (M=Ta, Nb) and oxynitride crystals in the removal of caffeine from model wastewater. Journal of Photochemistry and Photobiology A: Chemistry, 2016, 324, 70-80.	2.0	13

Bożena Czech

#	Article	IF	CITATIONS
37	Sorption of diclofenac and naproxen onto MWCNT in model wastewater treated by H2O2 and/or UV. Chemosphere, 2016, 149, 272-278.	4.2	41
38	Titania-coated nanosilica–cobalt ferrite composites: Structure and photocatalytic activity. Journal of Photochemistry and Photobiology A: Chemistry, 2016, 319-320, 40-52.	2.0	12
39	Photocatalytic Activity of SnO2-Doped SiO2@TiO2 Nanocomposites. NATO Science for Peace and Security Series A: Chemistry and Biology, 2015, , 255-264.	0.5	0
40	Photocatalytic treatment of pharmaceutical wastewater using new multiwall-carbon nanotubes/TiO2/SiO2 nanocomposites. Environmental Research, 2015, 137, 176-184.	3.7	89
41	Advanced oxidation (H2O2 and/or UV) of functionalized carbon nanotubes (CNT-OH and CNT-COOH) and its influence on the stabilization of CNTs in water and tannic acid solution. Environmental Pollution, 2015, 200, 161-167.	3.7	29
42	Water treatment by H2O2 and/or UV affects carbon nanotube (CNT) properties and fate in water and tannic acid solution. Environmental Science and Pollution Research, 2015, 22, 20198-20206.	2.7	11
43	MWCNT–TiO 2 –SiO 2 nanocomposites possessing the photocatalytic activity in UVA and UVC. Applied Catalysis B: Environmental, 2015, 162, 564-572.	10.8	35
44	Ecotoxicological evaluation of selected pharmaceuticals to Vibrio fischeri and Daphnia magna before and after photooxidation process. Ecotoxicology and Environmental Safety, 2014, 104, 247-253.	2.9	51
45	TiO2-assisted photocatalytic degradation of diclofenac, metoprolol, estrone and chloramphenicol as endocrine disruptors in water. Adsorption, 2013, 19, 619-630.	1.4	70
46	The application of biodegradable chelates in the preparation of Ni–TiO2/Al2O3 photocatalysts by the Double Impregnation Method. Journal of Photochemistry and Photobiology A: Chemistry, 2013, 260, 14-23.	2.0	2
47	Preparation and characterization of C,N-codoped TiO2 photocatalyst for the degradation of diclofenac from wastewater. Water Science and Technology, 2013, 68, 1322-1328.	1.2	24
48	Advanced Oxidation Processes in Triton X-100 and Wash-up Liquid Removal from Wastewater Using Modified TiO2/Al2O3 Photocatalysts. Water, Air, and Soil Pollution, 2012, 223, 4813-4822.	1.1	10
49	Surfactants removal from water and wastewater using Co modified TiO2/Al2O3 photocatalysts. Annales Universitatis Mariae Curie-Sklodowska Sectio AA – Chemia, 2011, 66, .	0.2	2
50	Artificial photosynthesis - CO2towards methanol. IOP Conference Series: Materials Science and Engineering, 2011, 19, 012010.	0.3	11
51	Removal of recalcitrant pollutants from wastewater. Applied Surface Science, 2010, 256, 5434-5438.	3.1	14
52	Band reactor for toxic and recalcitrant water contaminants. Polish Journal of Chemical Technology, 2007, 9, 18-20.	0.3	4