
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/473906/publications.pdf Version: 2024-02-01

CHE-LEN LIN

#	Article	IF	CITATIONS
1	A whole-air relaxed eddy accumulation measurement system for sampling vertical vapour exchange of elemental mercury. Tellus, Series B: Chemical and Physical Meteorology, 2022, 65, 19940.	0.8	24
2	Mercury cycling and isotopic fractionation in global forests. Critical Reviews in Environmental Science and Technology, 2022, 52, 3763-3786.	6.6	31
3	Mercury pollution in China: implications on the implementation of the Minamata Convention. Environmental Sciences: Processes and Impacts, 2022, 24, 634-648.	1.7	21
4	Canopy-Level Flux and Vertical Gradients of Hg ⁰ Stable Isotopes in Remote Evergreen Broadleaf Forest Show Year-Around Net Hg ⁰ Deposition. Environmental Science & Technology, 2022, 56, 5950-5959.	4.6	10
5	Decreasing mercury levels in consumer fish over the three decades of increasing mercury emissions in China. , 2022, 1, 46-52.		25
6	Translocation and distribution of mercury in biomasses from subtropical forest ecosystems: evidence from stable mercury isotopes. Acta Geochimica, 2021, 40, 42-50.	0.7	7
7	A comparison of two bidirectional air-surface exchange models for gaseous elemental mercury over vegetated surfaces. Atmospheric Environment, 2021, 246, 118096.	1.9	0
8	Effects of process factors on the performance of electrochemical disinfection for wastewater in a continuous-flow cell reactor. Environmental Science and Pollution Research, 2021, 28, 36573-36584.	2.7	6
9	Quantification of Atmospheric Mercury Deposition to and Legacy Re-emission from a Subtropical Forest Floor by Mercury Isotopes. Environmental Science & Technology, 2021, 55, 12352-12361.	4.6	19
10	Stable mercury isotopes stored in Masson Pinus tree rings as atmospheric mercury archives. Journal of Hazardous Materials, 2021, 415, 125678.	6.5	17
11	Chemistry and Isotope Fractionation of Divalent Mercury during Aqueous Reduction Mediated by Selected Oxygenated Organic Ligands. Environmental Science & Technology, 2021, 55, 13376-13386.	4.6	6
12	Global warming accelerates uptake of atmospheric mercury in regions experiencing glacier retreat. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 2049-2055.	3.3	51
13	Evaluation and optimization of electrocoagulation for treating Kraft paper mill wastewater. Journal of Environmental Chemical Engineering, 2020, 8, 103595.	3.3	31
14	Stable Mercury Isotope Transition during Postdepositional Decomposition of Biomass in a Forest Ecosystem over Five Centuries. Environmental Science & Technology, 2020, 54, 8739-8749.	4.6	38
15	Underestimated Sink of Atmospheric Mercury in a Deglaciated Forest Chronosequence. Environmental Science & Technology, 2020, 54, 8083-8093.	4.6	58
16	Elevated cadmium pollution since 1890s recorded by forest chronosequence in deglaciated region of Gongga, China. Environmental Pollution, 2020, 260, 114082.	3.7	13
17	Development of a novel composite resin for dissolved divalent mercury measurement using diffusive gradients in thin films. Chemosphere, 2020, 251, 126231.	4.2	10
18	Soil–atmosphere exchange flux of total gaseous mercury (TGM) at subtropical and temperate forest catchments. Atmospheric Chemistry and Physics, 2020, 20, 16117-16133.	1.9	9

#	Article	IF	CITATIONS
19	Water Quality Evaluation on an Urban Stormwater Retention Pond Using Wireless Sensor Networks and Hydrodynamic Modeling. Journal of Irrigation and Drainage Engineering - ASCE, 2019, 145, .	0.6	5
20	Significant Seasonal Variations in Isotopic Composition of Atmospheric Total Gaseous Mercury at Forest Sites in China Caused by Vegetation and Mercury Sources. Environmental Science & Technology, 2019, 53, 13748-13756.	4.6	55
21	Process factors driving dynamic exchange of elemental mercury vapor over soil in broadleaf forest ecosystems. Atmospheric Environment, 2019, 219, 117047.	1.9	27
22	Climate and Vegetation As Primary Drivers for Global Mercury Storage in Surface Soil. Environmental Science & Technology, 2019, 53, 10665-10675.	4.6	81
23	Evolution of four-decade atmospheric mercury release from a coal-fired power plant in North China. Atmospheric Environment, 2019, 213, 526-533.	1.9	16
24	Effects of air pollution control measures on air quality improvement in Guangzhou, China. Journal of Environmental Management, 2019, 244, 127-137.	3.8	56
25	Fate of mercury in two CFB utility boilers with different fueled coals and air pollution control devices. Fuel, 2019, 251, 651-659.	3.4	20
26	Mercury cycling and bioaccumulation in a changing environment. Science of the Total Environment, 2019, 670, 345.	3.9	3
27	Source contribution analysis of mercury deposition using an enhanced CALPUFF-Hg in the central Pearl River Delta, China. Environmental Pollution, 2019, 250, 1032-1043.	3.7	13
28	Effects of Precipitation on Mercury Accumulation on Subtropical Montane Forest Floor: Implications on Climate Forcing. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 959-972.	1.3	30
29	An improved method for recovering and preconcentrating mercury in natural water samples for stable isotope analysis. Journal of Analytical Atomic Spectrometry, 2019, 34, 2303-2313.	1.6	25
30	Source attribution for mercury deposition with an updated atmospheric mercury emission inventory in the Pearl River Delta Region, China. Frontiers of Environmental Science and Engineering, 2019, 13, 1.	3.3	13
31	Health benefit assessment of PM2.5 reduction in Pearl River Delta region of China using a model-monitor data fusion approach. Journal of Environmental Management, 2019, 233, 489-498.	3.8	44
32	Stable Isotope Evidence Shows Re-emission of Elemental Mercury Vapor Occurring after Reductive Loss from Foliage. Environmental Science & Technology, 2019, 53, 651-660.	4.6	107
33	Development and case study of a new-generation model-VAT for analyzing the boundary conditions influence on atmospheric mercury simulation. Frontiers of Environmental Science and Engineering, 2018, 12, 1.	3.3	1
34	Comparison of in vitro digestion methods for determining bioaccessibility of Hg in rice of China. Journal of Environmental Sciences, 2018, 68, 185-193.	3.2	20
35	lsotopic Composition of Gaseous Elemental Mercury in the Marine Boundary Layer of East China Sea. Journal of Geophysical Research D: Atmospheres, 2018, 123, 7656-7669.	1.2	43
36	Re-emission of legacy mercury from soil adjacent to closed point sources of Hg emission. Environmental Pollution, 2018, 242, 718-727.	3.7	49

#	Article	IF	CITATIONS
37	Assessment of Regional Mercury Deposition and Emission Outflow in Mainland China. Journal of Geophysical Research D: Atmospheres, 2018, 123, 9868-9890.	1.2	28
38	Health risks of heavy metal exposure through vegetable consumption near a large-scale Pb/Zn smelter in central China. Ecotoxicology and Environmental Safety, 2018, 161, 99-110.	2.9	114
39	Using Mercury Isotopes To Understand Mercury Accumulation in the Montane Forest Floor of the Eastern Tibetan Plateau. Environmental Science & Technology, 2017, 51, 801-809.	4.6	102
40	Mercury Isotope Signatures of Methylmercury in Rice Samples from the Wanshan Mercury Mining Area, China: Environmental Implications. Environmental Science & Technology, 2017, 51, 12321-12328.	4.6	43
41	Response surface modeling-based source contribution analysis and VOC emission control policy assessment in a typical ozone-polluted urban Shunde, China. Journal of Environmental Sciences, 2017, 51, 294-304.	3.2	31
42	A synthesis of research needs for improving the understanding of atmospheric mercury cycling. Atmospheric Chemistry and Physics, 2017, 17, 9133-9144.	1.9	33
43	Multi-model study of mercury dispersion in the atmosphere: vertical and interhemispheric distribution of mercury species. Atmospheric Chemistry and Physics, 2017, 17, 6925-6955.	1.9	30
44	Rapid Waterborne Pathogen Detection with Mobile Electronics. Sensors, 2017, 17, 1348.	2.1	9
45	Seasonal variations in metallic mercury (Hg ⁰) vapor exchange over biannual wheat–corn rotation cropland in the North China Plain. Biogeosciences, 2016, 13, 2029-2049.	1.3	23
46	Evaluation of health benefit using BenMAP-CE with an integrated scheme of model and monitor data during Guangzhou Asian Games. Journal of Environmental Sciences, 2016, 42, 9-18.	3.2	47
47	lsotopic Composition of Atmospheric Mercury in China: New Evidence for Sources and Transformation Processes in Air and in Vegetation. Environmental Science & Technology, 2016, 50, 9262-9269.	4.6	139
48	Enhanced accumulation and storage of mercury on subtropical evergreen forest floor: Implications on mercury budget in global forest ecosystems. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 2096-2109.	1.3	55
49	Mass-Dependent and -Independent Fractionation of Mercury Isotope during Gas-Phase Oxidation of Elemental Mercury Vapor by Atomic Cl and Br. Environmental Science & Technology, 2016, 50, 9232-9241.	4.6	143
50	Temporal Trend and Spatial Distribution of Speciated Atmospheric Mercury Emissions in China During 1978–2014. Environmental Science & Technology, 2016, 50, 13428-13435.	4.6	255
51	Assessment of Global Mercury Deposition through Litterfall. Environmental Science & Technology, 2016, 50, 8548-8557.	4.6	131
52	Investigation of processes controlling summertime gaseous elemental mercury oxidation at midlatitudinal marine, coastal, and inland sites. Atmospheric Chemistry and Physics, 2016, 16, 8461-8478.	1.9	33
53	Emission-dominated gas exchange of elemental mercury vapor over natural surfaces in China. Atmospheric Chemistry and Physics, 2016, 16, 11125-11143.	1.9	60
54	Depletion of atmospheric gaseous elemental mercury by plant uptake at Mt. Changbai, Northeast China. Atmospheric Chemistry and Physics, 2016, 16, 12861-12873.	1.9	82

CHE-JEN LIN

#	Article	IF	CITATIONS
55	Atmospheric wet and litterfall mercury deposition at urban and rural sites in China. Atmospheric Chemistry and Physics, 2016, 16, 11547-11562.	1.9	54
56	Monsoon-facilitated characteristics and transport of atmospheric mercury at a high-altitude background site in southwestern China. Atmospheric Chemistry and Physics, 2016, 16, 13131-13148.	1.9	46
57	Mercury transformation and speciation in flue gases from anthropogenic emission sources: a critical review. Atmospheric Chemistry and Physics, 2016, 16, 2417-2433.	1.9	114
58	Global observations and modeling of atmosphere–surface exchange of elemental mercury: a critical review. Atmospheric Chemistry and Physics, 2016, 16, 4451-4480.	1.9	101
59	A synthesis of terrestrial mercury in the western United States: Spatial distribution defined by land cover and plant productivity. Science of the Total Environment, 2016, 568, 522-535.	3.9	68
60	Surface-air mercury fluxes across Western North America: A synthesis of spatial trends and controlling variables. Science of the Total Environment, 2016, 568, 651-665.	3.9	36
61	A case study of development and application of a streamlined control and response modeling system for PM2.5 attainment assessment in China. Journal of Environmental Sciences, 2016, 41, 69-80.	3.2	16
62	Transboundary transport and deposition of Hg emission from springtime biomass burning in the Indo hina Peninsula. Journal of Geophysical Research D: Atmospheres, 2015, 120, 9758-9771.	1.2	25
63	Characteristics and potential sources of atmospheric mercury at a subtropical nearâ€coastal site in East China. Journal of Geophysical Research D: Atmospheres, 2015, 120, 8563-8574.	1.2	22
64	Mercury vapor air–surface exchange measured by collocated micrometeorological and enclosure methods – Part I: Data comparability and method characteristics. Atmospheric Chemistry and Physics, 2015, 15, 685-702.	1.9	47
65	Mercury vapor air–surface exchange measured by collocated micrometeorological and enclosure methods – Part II: Bias and uncertainty analysis. Atmospheric Chemistry and Physics, 2015, 15, 5359-5376.	1.9	34
66	Observation and analysis of speciated atmospheric mercury in Shangri-La, Tibetan Plateau, China. Atmospheric Chemistry and Physics, 2015, 15, 653-665.	1.9	64
67	Observations of atmospheric mercury in China: a critical review. Atmospheric Chemistry and Physics, 2015, 15, 9455-9476.	1.9	152
68	Correlation slopes of GEM / CO, GEM / CO ₂ , and GEM / CH ₄ and estimated mercury emissions in China, South Asia, the Indochinese Peninsula, and Central Asia derived from observations in northwestern and southwestern China. Atmospheric Chemistry and Physics, 2015, 15, 1013-1028.	1.9	30
69	Development of an integrated policy making tool for assessing air quality and human health benefits of air pollution control. Frontiers of Environmental Science and Engineering, 2015, 9, 1056-1065.	3.3	13
70	Design and demonstration of a next-generation air quality attainment assessment system for PM2.5 and O3. Journal of Environmental Sciences, 2015, 29, 178-188.	3.2	28
71	Development and case study of a science-based software platform to support policy making on air quality. Journal of Environmental Sciences, 2015, 27, 97-107.	3.2	13
72	Sources and Dynamic Processes Controlling Background and Peak Concentrations of TGM in Nanjing, China. Atmosphere, 2014, 5, 124-155.	1.0	7

#	Article	IF	CITATIONS
73	Accumulation and translocation of ¹⁹⁸ Hg in four crop species. Environmental Toxicology and Chemistry, 2014, 33, 334-340.	2.2	65
74	Spatial distribution and accumulation of Hg in soil surrounding a Zn/Pb smelter. Science of the Total Environment, 2014, 496, 668-677.	3.9	26
75	Biogas production from brown grease using a pilot-scale high-rate anaerobic digester. Renewable Energy, 2014, 68, 304-313.	4.3	22
76	Pilotâ€scale sequential anaerobic–aerobic biological treatment of waste streams from a paper mill. Environmental Progress and Sustainable Energy, 2014, 33, 359-368.	1.3	10
77	Sensitivity analysis of an updated bidirectional air–surface exchange model for elemental mercury vapor. Atmospheric Chemistry and Physics, 2014, 14, 6273-6287.	1.9	41
78	A deployable decentralized biofilm system for degrading organic carbon and benzene in wastewater. Environmental Progress and Sustainable Energy, 2013, 32, 505-511.	1.3	3
79	Highly elevated emission of mercury vapor due to the spontaneous combustion of refuse in a landfill. Atmospheric Environment, 2013, 79, 540-545.	1.9	14
80	Emission characteristics and air–surface exchange of gaseous mercury at the largest active landfill in Asia. Atmospheric Environment, 2013, 79, 188-197.	1.9	30
81	Field Approaches to Measure Hg Exchange Between Natural Surfaces and the Atmosphere—A Review. Critical Reviews in Environmental Science and Technology, 2013, 43, 1657-1739.	6.6	38
82	Source attribution for mercury deposition in the contiguous United States: Regional difference and seasonal variation. Journal of the Air and Waste Management Association, 2012, 62, 52-63.	0.9	28
83	Combined processes of two-stage Fenton-biological anaerobic filter–biological aerated filter for advanced treatment of landfill leachate. Waste Management, 2012, 32, 2401-2405.	3.7	33
84	Novel Dynamic Flux Chamber for Measuring Air–Surface Exchange of Hg ^o from Soils. Environmental Science & Technology, 2012, 46, 8910-8920.	4.6	49
85	Assessment of modeled mercury dry deposition over the Great Lakes region. Environmental Pollution, 2012, 161, 272-283.	3.7	59
86	Licklider Transmission Protocol (LTP)-Based DTN for Cislunar Communications. IEEE/ACM Transactions on Networking, 2011, 19, 359-368.	2.6	94
87	Application of statistical design for the optimization of microbial community of synthetic domestic wastewater. Biodegradation, 2011, 22, 205-213.	1.5	7
88	Estimating mercury emission outflow from East Asia using CMAQ-Hg. Atmospheric Chemistry and Physics, 2010, 10, 1853-1864.	1.9	78
89	Empirical Models for Estimating Mercury Flux from Soils. Environmental Science & Technology, 2010, 44, 8522-8528.	4.6	79
90	Evaluation of kinetic parameters and mass transfer of glucose-fed granules under hypoxic conditions. Biotechnology and Bioprocess Engineering, 2010, 15, 931-936.	1.4	3

#	Article	IF	CITATIONS
91	Study of atmospheric mercury budget in East Asia using STEM-Hg modeling system. Science of the Total Environment, 2010, 408, 3277-3291.	3.9	35
92	The influence of dynamic chamber design and operating parameters on calculated surface-to-air mercury fluxes. Atmospheric Environment, 2010, 44, 194-203.	1.9	100
93	Assessment of air quality benefits from national air pollution control policies in China. Part I: Background, emission scenarios and evaluation of meteorological predictions. Atmospheric Environment, 2010, 44, 3442-3448.	1.9	61
94	Assessment of air quality benefits from national air pollution control policies in China. Part II: Evaluation of air quality predictions and air quality benefits assessment. Atmospheric Environment, 2010, 44, 3449-3457.	1.9	82
95	Changes in pentachlorophenol (PCP) metabolism and physicochemical characteristics by granules responding to different oxygen availability. Environmental Progress and Sustainable Energy, 2010, 29, 307-312.	1.3	7
96	Inorganic fouling of pressure-driven membrane processes — A critical review. Desalination, 2010, 250, 236-248.	4.0	367
97	Cost optimization of a real-time GIS-based management system for hazardous waste transportation. Waste Management and Research, 2010, 28, 723-730.	2.2	3
98	Effect of oxygen availability on the removal efficiency and sludge characteristics during pentachlorophenol (PCP) biodegradation in a coupled granular sludge system. Water Science and Technology, 2010, 61, 1885-1893.	1.2	11
99	Microwave-Assisted Noncatalytic Destruction of Volatile Organic Compounds Using Ceramic-Based Microwave Absorbing Media. Industrial & Engineering Chemistry Research, 2010, 49, 8461-8469.	1.8	4
100	Atmospheric Aerosol over a Southeastern Region of Texas: Chemical Composition and Possible Sources. Environmental Modeling and Assessment, 2009, 14, 333-350.	1.2	6
101	Atmospheric Aerosols over a Southwestern Region of Texas. Environmental Modeling and Assessment, 2009, 14, 645-659.	1.2	1
102	Cultivation of Biogranules in a Continuous Flow Reactor at Low Dissolved Oxygen. Water, Air and Soil Pollution, 2009, 9, 213-221.	0.8	25
103	Enhancing biodegradation of wastewater by microbial consortia with fractional factorial design. Journal of Hazardous Materials, 2009, 171, 948-953.	6.5	32
104	Active Regeneration of Diesel Particulate Filter Employing Microwave Heating. Industrial & Engineering Chemistry Research, 2009, 48, 69-79.	1.8	15
105	Atmospheric aerosols over two sites in a southeastern region of Texas. Canadian Journal of Chemical Engineering, 2008, 86, 421-435.	0.9	1
106	Simulation of mercury emission control by activated carbon under confined-bed operations. Powder Technology, 2008, 180, 332-338.	2.1	16
107	Scientific uncertainties in atmospheric mercury models III: Boundary and initial conditions, model grid resolution, and Hg(II) reduction mechanism. Atmospheric Environment, 2008, 42, 1828-1845.	1.9	68
108	Model estimate of mercury emission from natural sources in East Asia. Atmospheric Environment, 2008, 42, 8674-8685.	1.9	89

#	Article	IF	CITATIONS
109	Atmospheric mercury near Salmon Falls Creek Reservoir in southern Idaho. Applied Geochemistry, 2008, 23, 438-453.	1.4	27
110	Closure to "Mechanistic Model for CaSO4 Fouling on Nanofiltration Membrane―by Che-Jen Lin, Saqib Shirazi, and Pritesh Rao. Journal of Environmental Engineering, ASCE, 2007, 133, 942-943.	0.7	3
111	Scientific uncertainties in atmospheric mercury models II: Sensitivity analysis in the CONUS domain. Atmospheric Environment, 2007, 41, 6544-6560.	1.9	70
112	Effects of operational parameters on cake formation of CaSO4 in nanofiltration. Water Research, 2006, 40, 806-816.	5.3	40
113	Scientific uncertainties in atmospheric mercury models I: Model science evaluation. Atmospheric Environment, 2006, 40, 2911-2928.	1.9	231
114	Sensitivity analysis of ground-level ozone concentration to emission changes in two urban regions of southeast Texas. Journal of Environmental Management, 2005, 75, 315-323.	3.8	21
115	A comparative study of US EPA 1996 and 1999 emission inventories in the west Gulf of Mexico coast region, USA. Journal of Environmental Management, 2005, 75, 303-313.	3.8	6
116	Modeling of mercury desorption from activated carbon at elevated temperatures under fluidized/fixed bed operations. Powder Technology, 2005, 151, 54-60.	2.1	11
117	Effect of operating parameters on permeate flux decline caused by cake formation — a model study. Desalination, 2005, 171, 95-105.	4.0	25
118	Development of a processor in BEIS3 for estimating vegetative mercury emission in the continental United States. Atmospheric Environment, 2005, 39, 7529-7540.	1.9	35
119	Mechanistic Model for CaSO4 Fouling on Nanofiltration Membrane. Journal of Environmental Engineering, ASCE, 2005, 131, 1387-1392.	0.7	34
120	Experimental and Kinetic Study of Mercury Adsorption on Various Activated Carbons in a Fixed-Bed Adsorber. Environmental Engineering Science, 2004, 21, 21-27.	0.8	8
121	Water-Related Matrix Isolation Phenomena during NO2 Photolysis in Argon Matrix. Applied Spectroscopy, 2004, 58, 528-534.	1.2	8
122	Fourier Transform Infrared-Probed O(3P) Microreactor: Demonstration with Ethylene Reactions in Argon Matrix. Applied Spectroscopy, 2004, 58, 1236-1242.	1.2	2
123	Degradation of monomethylmercury chloride by hydroxyl radicals in simulated natural waters. Water Research, 2003, 37, 2496-2504.	5.3	86
124	Dynamic Oxidation of Gaseous Mercury in the Arctic Troposphere at Polar Sunrise. Environmental Science & Technology, 2002, 36, 1245-1256.	4.6	526
125	Modeling of mercury sorption by activated carbon in a confined, a semi-fluidized, and a fluidized bed. Waste Management, 2002, 22, 391-398.	3.7	21
126	The Chemical Transformations of Chromium in Natural Waters – A Model Study. Water, Air, and Soil Pollution, 2002, 139, 137-158.	1.1	54

#	Article	IF	CITATIONS
127	Receptor modeling for smoke of 1998 biomass burning in Central America. Journal of Geophysical Research, 2001, 106, 22871-22886.	3.3	41
128	POTENTIAL SOURCES OF OZONE IN BEAUMONT, TEXAS, USA. , 2000, , .		0
129	The chemistry of atmospheric mercury: a review. Atmospheric Environment, 1999, 33, 2067-2079.	1.9	527
130	Aqueous phase reactions of mercury with free radicals and chlorine: Implications for atmospheric mercury chemistry. Chemosphere, 1999, 38, 1253-1263.	4.2	56
131	Two-phase model of mercury chemistry in the atmosphere. Atmospheric Environment, 1998, 32, 2543-2558.	1.9	51
132	Oxidation of elemental mercury by aqueous chlorine (HOCl/OClâ^'): Implications for tropospheric mercury chemistry. Journal of Geophysical Research, 1998, 103, 28093-28102.	3.3	64
133	Aqueous Photochemistry of Mercury with Organic Acids. Journal of the Air and Waste Management Association, 1998, 48, 144-150.	0.9	100
134	Aqueous free radical chemistry of mercury in the presence of iron oxides and ambient aerosol. Atmospheric Environment, 1997, 31, 4125-4137.	1.9	111