Hervé Bricout

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4739025/publications.pdf

Version: 2024-02-01

94 papers 2,800 citations

33 h-index 214527 47 g-index

104 all docs

104 docs citations

104 times ranked 2394 citing authors

#	Article	IF	Citations
1	Epimerization of isosorbide catalyzed by homogeneous ruthenium-phosphine complexes: A new step towards an industrial process. Inorganica Chimica Acta, 2021, 515, 120094.	1.2	2
2	Asymmetric hydrogenation of ethyl pyruvate over aqueous dispersed Pt nanoparticles stabilized by a cinchonidine-functionalized \hat{l}^2 -cyclodextrin. Catalysis Communications, 2021, 150, 106272.	1.6	2
3	Hydrohydroxymethylation of Ethyl Ricinoleate and Castor Oil. ACS Sustainable Chemistry and Engineering, 2021, 9, 9444-9454.	3.2	18
4	Reductive Hydroformylation of Isosorbide Diallyl Ether. Molecules, 2021, 26, 7322.	1.7	11
5	Anionic Amphiphilic Cyclodextrins Bearing Oleic Grafts for the Stabilization of Ruthenium Nanoparticles Efficient in Aqueous Catalytic Hydrogenation. ChemCatChem, 2020, 12, 1013-1018.	1.8	8
6	Rhodium-Catalyzed Aqueous Biphasic Olefin Hydroformylation Promoted by Amphiphilic Cyclodextrins. Catalysts, 2020, 10, 56.	1.6	18
7	Catalytic reduction of 4-nitrophenol with gold nanoparticles stabilized by large-ring cyclodextrins. New Journal of Chemistry, 2020, 44, 21007-21011.	1.4	17
8	Multiscale Structure of Starches Grafted with Hydrophobic Groups: A New Analytical Strategy. Molecules, 2020, 25, 2827.	1.7	13
9	cRhâ€Catalyzed Hydroformylation of Divinylglycol: An Effective Way to Access 2,7â€Dioxadecalinâ€3,8â€diol. European Journal of Organic Chemistry, 2019, 2019, 4372-4376.	1.2	0
10	Highly Waterâ€Soluble Amphiphilic Cyclodextrins Bearing Branched and Cyclic Oleic Grafts. European Journal of Organic Chemistry, 2019, 2019, 4863-4868.	1.2	4
11	First Evidence of Cyclodextrin Inclusion Complexes in a Deep Eutectic Solvent. ACS Sustainable Chemistry and Engineering, 2019, 7, 6345-6351.	3.2	41
12	Synthesis of 2-Hydroxydodecyl Starch Ethers: Importance of the Purification Process. Industrial & Engineering Chemistry Research, 2019, 58, 2437-2444.	1.8	5
13	Oleic Acid Based Cyclodextrins for the Development of New Hydrosoluble Amphiphilic Compounds. European Journal of Organic Chemistry, 2019, 2019, 1236-1241.	1.2	6
14	New water-soluble Schiff base ligands based on \hat{l}^2 -cyclodextrin for aqueous biphasic hydroformylation reaction. Pure and Applied Chemistry, 2018, 90, 845-855.	0.9	7
15	Unconventional media and technologies for starch etherification and esterification. Green Chemistry, 2018, 20, 1152-1168.	4.6	75
16	Catalysis in Cyclodextrin-Based Unconventional Reaction Media: Recent Developments and Future Opportunities. ACS Sustainable Chemistry and Engineering, 2017, 5, 3598-3606.	3.2	46
17	Green and Scalable Palladiumâ€onâ€Carbonâ€Catalyzed Tsuji–Trost Coupling Reaction Using an Efficient and Continuous Flow System. European Journal of Organic Chemistry, 2017, 2017, 1078-1085.	1.2	10
18	Deep eutectic solvents as green absorbents of volatile organic pollutants. Environmental Chemistry Letters, 2017, 15, 747-753.	8.3	66

#	Article	IF	CITATIONS
19	Water-soluble phosphane-substituted cyclodextrin as an effective bifunctional additive in hydroformylation of higher olefins. Catalysis Science and Technology, 2017, 7, 3823-3830.	2.1	20
20	Transition Metal Complexes Coordinated by Water Soluble Phosphane Ligands: How Cyclodextrins Can Alter the Coordination Sphere?. Molecules, 2017, 22, 140.	1.7	4
21	\hat{l}^2 -Cyclodextrins Decrease Cholesterol Release and ABC-Associated Transporter Expression in Smooth Muscle Cells and Aortic Endothelial Cells. Frontiers in Physiology, 2016, 7, 185.	1.3	28
22	Cleavage of Benzyl Phosphonium Salts as Efficient Bypass for the Synthesis of Disulfonated Alkyldiphenylphosphanes Bearing an Oleumâ€Sensitive Alkyl Group. European Journal of Organic Chemistry, 2016, 2016, 3322-3325.	1.2	2
23	Recent developments in cyclodextrinâ€mediated aqueous biphasic hydroformylation and tsuji–trost reactions. Applied Organometallic Chemistry, 2015, 29, 580-587.	1.7	26
24	Tetrasulfonated 1,2â€Bis(diphenylphosphanyl)ethane as a Building Block for the Synthesis of Disulfonated Alkyldiphenylphosphanes. European Journal of Organic Chemistry, 2015, 2015, 5509-5512.	1.2	2
25	Cyclodextrins Modified by Metal-Coordinating Groups for Aqueous Organometallic Catalysis: What Remains to be Done?. Current Organocatalysis, 2015, 3, 24-31.	0.3	14
26	Rhodium catalyzed hydroformylation of 1-decene in low melting mixtures based on various cyclodextrins and N,N′-dimethylurea. Catalysis Communications, 2015, 63, 62-65.	1.6	37
27	Homogenous catalytic hydrogenation of bicarbonate with water soluble aryl phosphine ligands. Inorganica Chimica Acta, 2015, 431, 132-138.	1.2	6
28	Rhodium catalyzed hydroformylation assisted by cyclodextrins in biphasic medium: Can sulfonated naphthylphosphanes lead to active, selective and recyclable catalytic species?. Catalysis Today, 2015, 247, 47-54.	2.2	15
29	Synthesis and characterization of a new photoinduced switchable \hat{l}^2 -cyclodextrin dimer. Beilstein Journal of Organic Chemistry, 2014, 10, 2874-2885.	1.3	20
30	Organometallic synthesis of water-soluble ruthenium nanoparticles in the presence of sulfonated diphosphines and cyclodextrins. Materials Research Society Symposia Proceedings, 2014, 1675, 219-225.	0.1	2
31	Low melting mixtures based on \hat{l}^2 -cyclodextrin derivatives and N,N \hat{a} e 2 -dimethylurea as solvents for sustainable catalytic processes. Green Chemistry, 2014, 16, 3876-3880.	4.6	50
32	Hydrogen Production by Selective Dehydrogenation of HCOOH Catalyzed by Ru-Biaryl Sulfonated Phosphines in Aqueous Solution. ACS Catalysis, 2014, 4, 3002-3012.	5. 5	68
33	Recent breakthroughs in aqueous cyclodextrin-assisted supramolecular catalysis. Catalysis Science and Technology, 2014, 4, 1899.	2.1	100
34	Efficient Ruthenium Nanocatalysts in Liquid–Liquid Biphasic Hydrogenation Catalysis: Towards a Supramolecular Control through a Sulfonated Diphosphine–Cyclodextrin Smart Combination. ChemCatChem, 2013, 5, 3802-3811.	1.8	29
35	A cyclodextrin dimer as a supramolecular reaction platform for aqueous organometallic catalysis. Chemical Communications, 2013, 49, 6989.	2.2	28
36	Hydroformylation in Aqueous Biphasic Media Assisted by Molecular Receptors. Topics in Current Chemistry, 2013, 342, 49-78.	4.0	8

#	Article	lF	Citations
37	Aqueous biphasic hydrogenation of benzene catalyzed by ruthenium complex of trisulfonated tris(biphenyl)phosphine. Catalysis Science and Technology, 2012, 2, 2273.	2.1	4
38	Water-soluble diphosphadiazacyclooctanes as ligands for aqueous organometallic catalysis. Catalysis Communications, 2012, 29, 77-81.	1.6	10
39	Aqueous biphasic hydroformylation in the presence of cyclodextrins mixtures: evidence of a positive synergistic effect. Dalton Transactions, 2012, 41, 8643.	1.6	24
40	Cyclodextrin–phosphane possessing a guest-tunable conformation for aqueous rhodium-catalyzed hydroformylation. Chemical Communications, 2012, 48, 753-755.	2.2	47
41	Rhodiumâ€eatalyzed hydroformylation of unsaturated fatty esters in aqueous media assisted by activated carbon. European Journal of Lipid Science and Technology, 2012, 114, 1439-1446.	1.0	29
42	Phosphane-Based Cyclodextrins as Mass Transfer Agents and Ligands for Aqueous Organometallic Catalysis. Molecules, 2012, 17, 13062-13072.	1.7	21
43	Impact of cyclodextrins on the behavior of amphiphilic ligands in aqueous organometallic catalysis. Beilstein Journal of Organic Chemistry, 2012, 8, 1479-1484.	1.3	19
44	Functionalized Cyclodextrins as First and Second Coordination Sphere Ligands for Aqueous Organometallic Catalysis. European Journal of Inorganic Chemistry, 2012, 2012, 1571-1578.	1.0	44
45	Cyclodextrin/Amphiphilic Phosphane Mixed Systems and their Applications in Aqueous Organometallic Catalysis. Advanced Synthesis and Catalysis, 2012, 354, 1337-1346.	2.1	30
46	Alkyl sulfonated diphosphines-stabilized ruthenium nanoparticles as efficient nanocatalysts in hydrogenation reactions in biphasic media. Catalysis Today, 2012, 183, 34-41.	2.2	38
47	Biphasic hydroformylation of 1-octene catalyzed by cobalt complex of trisulfonated tris(biphenyl)phosphine. Applied Catalysis A: General, 2012, 413-414, 273-279.	2.2	21
48	Interaction of waterâ€soluble triphenylphosphines with βâ€cyclodextrin: a quantum chemistry study. Journal of Physical Organic Chemistry, 2011, 24, 1129-1135.	0.9	6
49	Synthesis, Rhodium Complexes and Catalytic Applications of a New Waterâ€Soluble Triphenylphosphaneâ€Modified βâ€Cyclodextrin. Advanced Synthesis and Catalysis, 2011, 353, 1325-1334.	2.1	32
50	Properties and Catalytic Activities of New Easilyâ€Made Amphiphilic Phosphanes for Aqueous Organometallic Catalysis. Advanced Synthesis and Catalysis, 2010, 352, 1193-1203.	2.1	27
51	Ditopic Cyclodextrinâ€Based Receptors: New Perspectives in Aqueous Organometallic Catalysis. Advanced Synthesis and Catalysis, 2010, 352, 1467-1475.	2.1	12
52	Cyclodextrins as Mass Transfer Additives in Aqueous Organometallic Catalysis. Current Organic Chemistry, 2010, 14, 1296-1307.	0.9	41
53	Amphiphilic photo-isomerisable phosphanes for aqueous organometallic catalysis. Chemical Communications, 2010, 46, 7813.	2,2	23
54	Chemically Modified Cyclodextrins: An Attractive Class of Supramolecular Hosts for the Development of Aqueous Biphasic Catalytic Processes. Sustainability, 2009, 1, 924-945.	1.6	55

#	Article	IF	Citations
55	A Propertyâ€Matched Waterâ€Soluble Analogue of the Benchmark Ligand PPh ₃ . ChemSusChem, 2008, 1, 631-636.	3.6	19
56	Biphasic Aqueous Organometallic Catalysis Promoted by Cyclodextrins: How to Design the Waterâ€Soluble Phenylphosphane to Avoid Interaction with Cyclodextrin. Advanced Synthesis and Catalysis, 2008, 350, 609-618.	2.1	36
57	Fine tuning of sulfoalkylated cyclodextrin structures to improve their mass-transfer properties in an aqueous biphasic hydroformylation reaction. Journal of Molecular Catalysis A, 2008, 286, 11-20.	4.8	26
58	Self-Assembled Supramolecular Bidentate Ligands for Aqueous Organometallic Catalysis. Angewandte Chemie - International Edition, 2007, 46, 3040-3042.	7.2	53
59	Biphasic aqueous organometallic catalysis promoted by cyclodextrins: Can surface tension measurements explain the efficiency of chemically modified cyclodextrins?. Journal of Colloid and Interface Science, 2007, 307, 481-487.	5.0	77
60	Supramolecular shuttle and protective agent: a multiple role of methylated cyclodextrins in the chemoselective hydrogenation of benzene derivatives with ruthenium nanoparticles. Chemical Communications, 2006, , 296-298.	2.2	84
61	Methylated β-cyclodextrin as P-gp modulators for deliverance of doxorubicin across an in vitro model of blood–brain barrier. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 2154-2157.	1.0	48
62	Eco-efficient Catalytic Hydrodechlorination of Carbon Tetrachloride in Aqueous Cyclodextrin Solutions. Catalysis Letters, 2006, 108, 209-214.	1.4	13
63	Peracetylated \hat{l}^2 -cyclodextrin as solubilizer of arylphosphines in supercritical carbon dioxide. Journal of Supercritical Fluids, 2006, 36, 173-181.	1.6	23
64	Supramolecular Trapping of Phosphanes by Cyclodextrins: A General Approach to Generate Phosphane Coordinatively Unsaturated Organometallic Complexes. European Journal of Inorganic Chemistry, 2006, 2006, 1611-1619.	1.0	14
65	Heptakis(2,3-di-O-methyl-6-O-sulfopropyl)-β-cyclodextrin: A Genuine Supramolecular Carrier for Aqueous Organometallic Catalysis. Advanced Synthesis and Catalysis, 2006, 348, 379-386.	2.1	38
66	Substrate-selective aqueous organometallic catalysis. How small water-soluble organic molecules enhance the supramolecular discrimination. Tetrahedron, 2005, 61, 4811-4817.	1.0	21
67	Two-Phase Hydroformylation of Higher Olefins Using Randomly Methylated ?-Cyclodextrin as Mass Transfer Promoter: A Smart Solution for Preserving the Intrinsic Properties of the Rhodium/Trisulfonated Triphenylphosphine Catalytic System. Advanced Synthesis and Catalysis, 2005, 347. 55-59.	2.1	41
68	Sulfobutyl Ether-Î ² -Cyclodextrins: Promising Supramolecular Carriers for Aqueous Organometallic Catalysis. Advanced Synthesis and Catalysis, 2005, 347, 1301-1307.	2.1	35
69	Rhodium Complexes Non-Covalently Bound to Cyclodextrins: Novel Water-Soluble Supramolecular Catalysts for the Biphasic Hydroformylation of Higher Olefins. Chemistry - A European Journal, 2005, 11, 6228-6236.	1.7	31
70	Complexation of Monosulfonated Triphenylphosphine with Chemically Modified \hat{l}^2 -Cyclodextrins: Effect of Substituents on the Stability of Inclusion Complexes. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2005, 51, 79-85.	1.6	17
71	Behavior of α-, β-, and γ-Cyclodextrins and Their Derivatives on an in Vitro Model of Blood-Brain Barrier. Journal of Pharmacology and Experimental Therapeutics, 2004, 310, 745-751.	1.3	93
72	Substrate-selective aqueous organometallic catalysis. How size and chemical modification of cyclodextrin influence the substrate selectivity. Tetrahedron, 2004, 60, 6487-6493.	1.0	39

#	Article	IF	CITATIONS
73	Cleavage of water-insoluble alkylallylcarbonates catalysed by a palladium/TPPTS/cyclodextrin system: effect of phosphine/cyclodextrin interactions on the reaction rate. Journal of Molecular Catalysis A, 2004, 215, 23-32.	4.8	35
74	Cyclodextrins or Calixarenes: What is the Best Mass Transfer Promoter for Suzuki Cross-Coupling Reactions in Water?. Advanced Synthesis and Catalysis, 2004, 346, 83-89.	2.1	53
75	High-Pressure31P{1H}â€NMR Studies of RhH(CO)(TPPTS)3 in the Presence of Methylated Cyclodextrins: New Light on Rhodium-Catalyzed Hydroformylation Reaction Assisted by Cyclodextrins. Advanced Synthesis and Catalysis, 2004, 346, 425-431.	2.1	59
76	Molecular Recognition Between a Water-Soluble Organometallic Complex and a ?-Cyclodextrin: First Example of Second-Sphere Coordination Adducts Possessing a Catalytic Activity. Advanced Synthesis and Catalysis, 2004, 346, 1449-1456.	2.1	33
77	Effects of \hat{I}^3 - and Hydroxypropyl- \hat{I}^3 -cyclodextrins on the Transport of Doxorubicin across an in Vitro Model of Blood-Brain Barrier. Journal of Pharmacology and Experimental Therapeutics, 2004, 311, 1115-1120.	1.3	48
78	Methylated- \hat{l}^2 -cyclodextrins: useful discriminating tools for substrate-selective reactions in aqueous organometallic catalysis. Catalysis Communications, 2004, 5, 265-270.	1.6	21
79	Unexpected Effect of Cyclodextrins on Water-Soluble Rhodium Complexes. European Journal of Inorganic Chemistry, 2003, 2003, 595-599.	1.0	27
80	Complexation of monosulfonated triphenylphosphine oxides with \hat{l}^2 -cyclodextrin: spectroscopic study and consequence on the behaviour of cyclodextrins in aqueous-phase organometallic catalysis. New Journal of Chemistry, 2003, 27, 1603-1608.	1.4	12
81	Phosphocontaining Cyclodextrins as a New Class of Supramolecular Structures. Phosphorus, Sulfur and Silicon and the Related Elements, 2002, 177, 1489-1492.	0.8	0
82	Cyclodextrins as inverse phase transfer catalysts for the biphasic catalytic hydrogenation of aldehydes: a green and easy alternative to conventional mass transfer promoters. Green Chemistry, 2002, 4, 188-193.	4.6	53
83	Convenient synthesis of new amphiphilic triphenylphosphine analogues for aqueous biphasic catalysis. Tetrahedron Letters, 2001, 42, 8837-8840.	0.7	24
84	Substrate-selective catalysis in an aqueous biphasic system with per $(2,6$ -di-O-methyl)- \hat{l}^2 -cyclodextrin. Catalysis Today, 2001, 66, 355-361.	2.2	30
85	Chemically ModifiedÎ ² -Cyclodextrins as Supramolecular Carriers in the Biphasic Palladium-Catalyzed Cleavage of Allylic Carbonates: Activity Enhancement and Substrate-Selective Catalysis. European Journal of Organic Chemistry, 1999, 1999, 3127-3129.	1.2	31
86	Synthetic and kinetic aspects of nickel-catalysed amination of allylic alcohol derivatives. Tetrahedron, 1998, 54, 1073-1084.	1.0	39
87	Homogeneous and Biphasic Nickel-Catalyzed Isomerization of Allylic Alcohols. European Journal of Inorganic Chemistry, 1998, 1998, 1739-1744.	1.0	48
88	Nickel vs. palladium catalysts for coupling reactions of allyl alcohol with soft nucleophiles: activities and deactivation processes. Journal of Molecular Catalysis A, 1998, 136, 243-251.	4.8	73
89	Efficient coupling reactions of allylamines with soft nucleophiles using nickel-based catalysts. Chemical Communications, 1997, , 1393-1394.	2.2	33
90	Further developments in metal-catalysed Cî—,C bond cleavage in allylic dimethyl malonate derivatives. Tetrahedron Letters, 1997, 38, 1053-1056.	0.7	34

#	Article	IF	CITATIONS
91	Bis(aminophosphine)-nickel complexes as efficient catalysts for alkylation of allylic acetates with stabilized nucleophiles. Tetrahedron Letters, 1996, 37, 6105-6108.	0.7	55
92	Nickel-catalysed substitution reactions of allylic compounds with soft nucleophiles: an efficient alternative to palladium catalysis. Journal of the Chemical Society Chemical Communications, 1995 , , 1863 .	2.0	42
93	Highly selective synthesis of 4-vinylcyclohexene by cyclodimerization of Butadiene catalysed by aminophosphinephosphinite and bis(aminophosphine) chiral ligands nickel complexes. Tetrahedron Letters, 1994, 35, 413-416.	0.7	30
94	Highly regio- and stereo-controlled hydroformylation of ortho-substituted (Î-6-styrene)chromium complexes. Journal of Organometallic Chemistry, 1994, 483, c1-c5.	0.8	7