List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4738875/publications.pdf Version: 2024-02-01

ELENA V CHSEVSKAVA

#	Article	IF	CITATIONS
1	Palladium-catalyzed sabinene oxidation with hydrogen peroxide: Smart fragrance production and DFT insights. Molecular Catalysis, 2022, 517, 112033.	2.0	1
2	Cobalt atalysed Reductive Etherification Using Phosphine Oxide Promoters under Hydroformylation Conditions. Chemistry - A European Journal, 2022, 28, .	3.3	1
3	Catalytic aerobic epoxidation of bio-renewable alkenes using organic carbonates as green solvents. Molecular Catalysis, 2022, 527, 112400.	2.0	3
4	One-pot hydroformylation/O-acylation of propenylbenzenes for the synthesis of polyfunctionalized fragrances. Catalysis Today, 2021, 381, 272-279.	4.4	7
5	Coupling of phenylacetaldehyde and styrene oxide with biorenewable alkenes in eco-friendly solvents. Catalysis Today, 2021, 381, 254-260.	4.4	3
6	Heteropoly acid catalysts in Prins cyclization for the synthesis of Florol®. Molecular Catalysis, 2021, 502, 111382.	2.0	3
7	Cobalt-Catalyzed Hydroformylation under Mild Conditions in the Presence of Phosphine Oxides. ACS Sustainable Chemistry and Engineering, 2021, 9, 5148-5154.	6.7	27
8	Palladium catalyzed oxidation of biorenewable β-citronellol and geraniol for the synthesis of polyfunctionalized fragrances. Molecular Catalysis, 2021, 504, 111449.	2.0	4
9	Hydroformylation and one-pot hydroformylation/epoxy ring cleavage of limonene oxide: A sustainable access to biomass-based multi-functional fragrances. Applied Catalysis A: General, 2021, 616, 118082.	4.3	3
10	A further step to sustainable palladium catalyzed oxidation: Allylic oxidation of alkenes in green solvents. Applied Catalysis A: General, 2021, 625, 118349.	4.3	0
11	The first one-pot metathesis–hydroformylation procedure: a straight synthesis of 2-arylpropanals from renewable 1-propenylbenzenes. Catalysis Science and Technology, 2021, 11, 8007-8013.	4.1	5
12	Heteropoly acid catalysts in upgrading of biorenewables: Synthesis of para-menthenic fragrance compounds from α-pinene oxide. Catalysis Today, 2020, 344, 166-170.	4.4	20
13	New scents using eco-friendly solvents: Oxo synthesis of aldehydes from caryophyllane sesquiterpenes. Catalysis Today, 2020, 344, 24-31.	4.4	6
14	Hydroformylation of recalcitrating biorenewable compounds containing trisubstituted double bonds. Applied Catalysis A: General, 2020, 591, 117406.	4.3	1
15	Tandem hydroformylation/isomerization/hydrogenation of bio-derived 1-arylbutadienes for the regioselective synthesis of branched aldehydes. Applied Catalysis A: General, 2020, 598, 117583.	4.3	7
16	Heteropoly acid catalysis for the isomerization of biomass-derived limonene oxide and kinetic separation of the trans-isomer in green solvents. Applied Catalysis A: General, 2019, 584, 117173.	4.3	18
17	New scents from bio-renewable cis-jasmone by aerobic palladium catalyzed oxidations. Applied Catalysis A: General, 2019, 584, 117171.	4.3	4
18	Anisole: a further step to sustainable hydroformylation. Green Chemistry, 2019, 21, 1091-1098.	9.0	47

#	Article	IF	CITATIONS
19	Sustainable route to biomass-based amines: rhodium catalyzed hydroaminomethylation in green solvents. Applied Catalysis A: General, 2019, 574, 97-104.	4.3	12
20	Hydroformylation of biomass-based hydroxyolefins in eco-friendly solvents: New fragrances from myrtenol and nopol. Molecular Catalysis, 2019, 462, 1-9.	2.0	23
21	Heteropoly acid catalysts for the valorization of biorenewables: Isomerization of caryophyllene oxide in green solvents. Molecular Catalysis, 2018, 458, 213-222.	2.0	11
22	Intermolecular Halogenation/Esterification of Alkenes with <i>N</i> â€Halosuccinimide and Acetic Acid Catalyzed by 1,4â€Diazabicyclo[2.2.2]octane. Advanced Synthesis and Catalysis, 2017, 359, 2297-2303.	4.3	23
23	Heteropoly acid catalysts in upgrading of biorenewables: Cycloaddition of aldehydes to monoterpenes in green solvents. Applied Catalysis B: Environmental, 2017, 217, 92-99.	20.2	27
24	Aerobic Palladiumâ€Catalyzed Oxidations in the Upgrading of Biorenewables: Oxidation of βâ€lonone and αâ€lonone. Asian Journal of Organic Chemistry, 2017, 6, 1628-1634.	2.7	8
25	Palladium catalyzed aerobic oxidation for the incorporation of an olfactory group on naturally occurring β-caryophyllene. Applied Catalysis A: General, 2017, 548, 33-38.	4.3	6
26	Study of the influence of PPh3 used as capping ligand or as reaction modifier for hydroformylation reaction involving Rh NPs as precatalyst. Applied Catalysis A: General, 2017, 548, 136-142.	4.3	15
27	Coupling of monoterpenic alkenes and alcohols with benzaldehyde catalyzed by silica-supported tungstophosphoric heteropoly acid. Catalysis Today, 2017, 289, 14-19.	4.4	20
28	Red mud based gold catalysts in the oxidation of benzyl alcohol with molecular oxygen. Catalysis Today, 2017, 289, 89-95.	4.4	20
29	Functionalization of the naturally occurring linalool and nerol by the palladium catalyzed oxidation of their trisubstituted olefinic bonds. Journal of Molecular Catalysis A, 2017, 426, 429-434.	4.8	14
30	Aggregating an olfactory group on the naturally occurring β-caryophyllene by hydroformylation. Applied Catalysis A: General, 2016, 523, 139-145.	4.3	2
31	Support Functionalization with a Phosphineâ€Containing Hyperbranched Polymer: A Strategy to Enhance Phosphine Grafting and Metal Loading in a Hydroformylation Catalyst. ChemCatChem, 2016, 8, 1951-1960.	3.7	15
32	Heteropoly acid catalysts for the synthesis of fragrance compounds from bio-renewables: acetylation of nopol and terpenic alcohols. RSC Advances, 2016, 6, 43217-43222.	3.6	12
33	Aerobic oxidation of naturally occurring α-bisabolol catalyzed by palladium(II) salts as sole catalysts. Applied Catalysis A: General, 2016, 524, 126-133.	4.3	7
34	Rhodium Nanoparticles as Precursors for the Preparation of an Efficient and Recyclable Hydroformylation Catalyst. ChemCatChem, 2015, 7, 1566-1572.	3.7	22
35	Aerobic Oxidative Esterification of Benzyl Alcohol and Acetaldehyde over Gold Supported on Nanostructured Ceria–Alumina Mixed Oxides. ChemCatChem, 2015, 7, 1011-1017.	3.7	18
36	Palladium catalyzed oxidation of renewable terpenes with molecular oxygen: oxidation of α-bisabolol under chloride-free nonacidic conditions. RSC Advances, 2015, 5, 56987-56992.	3.6	8

#	Article	IF	CITATIONS
37	Heteropoly acid catalyzed cyclization of nerolidol and farnesol: Synthesis of α-bisabolol. Applied Catalysis A: General, 2015, 502, 271-275.	4.3	20
38	Phospholes as efficient ancillaries for the rhodium-catalyzed hydroformylation and hydroaminomethylation of estragole. Applied Catalysis A: General, 2015, 497, 10-16.	4.3	26
39	Rhodium catalyzed aqueous biphasic hydroformylation of naturally occurring allylbenzenes in the presence of water-soluble phosphorus ligands. Applied Catalysis A: General, 2015, 490, 163-169.	4.3	21
40	Synthesis of fragrance compounds from renewable resources: the aqueous biphasic hydroformylation of acyclic terpenes. Catalysis Science and Technology, 2015, 5, 960-966.	4.1	22
41	An Electrostatically-Anchored Rhodium(I) Catalyst for the Hydroformylation and Tandem Hydroformylation/Acetalization of Biorenewable Allyl Benzenes. Journal of the Brazilian Chemical Society, 2014, , .	0.6	1
42	Rhodium catalyzed hydroformylation of nerolidol. Catalysis Science and Technology, 2014, 4, 1954-1959.	4.1	13
43	Palladium catalyzed oxidation of renewable terpenes with molecular oxygen: oxidation of α-bisabolol under chloride-free conditions. Catalysis Science and Technology, 2014, 4, 2016-2022.	4.1	11
44	Aerobic oxidation of benzyl alcohol in methanol solutions over Au nanoparticles: Mg(OH)2 vs MgO as the support. Applied Catalysis A: General, 2014, 473, 96-103.	4.3	47
45	Highly Active and Recyclable Metal Oxide Catalysts for the Prins Condensation of Biorenewable Feedstocks. ChemCatChem, 2014, 6, 2134-2139.	3.7	7
46	Heteropoly Acid Catalysts for the Synthesis of Fragrance Compounds from Biorenewables: The Alkoxylation of Monoterpenes. ChemCatChem, 2014, 6, 2706-2711.	3.7	22
47	Hydroformylation in the Realm of Scents. ChemCatChem, 2014, 6, 382-411.	3.7	87
48	Reactions of Terpenes Catalyzed by Heteropoly Compounds: Valorization of Biorenewables. ChemCatChem, 2014, 6, 1506-1515.	3.7	47
49	Synthesis of fragrance compounds from acyclic monoterpenes: Rhodium catalyzed hydroformylation and tandem hydroformylation/acetalization of linalool and β-citronellene. Applied Catalysis A: General, 2013, 466, 208-215.	4.3	28
50	Taking advantage of a terpyridine ligand for the deposition of Pd nanoparticles onto a magnetic material for selective hydrogenation reactions. Journal of Materials Chemistry A, 2013, 1, 1441-1449.	10.3	34
51	Heteropoly Acid Catalysts for the Synthesis of Fragrance Compounds from Biorenewables: Cycloaddition of Crotonaldehyde to Limonene, αâ€Pinene, and βâ€Pinene. ChemCatChem, 2013, 5, 3022-3026.	3.7	25
52	Synthesis of Fragrance Compounds from Biorenewables: Tandem Hydroformylation–Acetalization of Bicyclic Monoterpenes. ChemCatChem, 2013, 5, 1884-1890.	3.7	35
53	Heteropoly acid catalysts for the synthesis of fragrance compounds from biorenewables: isomerization of limonene oxide. Catalysis Science and Technology, 2013, 3, 244-250.	4.1	44
54	Gold nanoparticles supported on magnesium oxide as catalysts for the aerobic oxidation of alcohols under alkali-free conditions. Journal of Catalysis, 2012, 292, 148-156.	6.2	78

#	Article	IF	CITATIONS
55	lsomerization of α-pinene oxide catalyzed by iron-modified mesoporous silicates. Applied Catalysis A: General, 2012, 443-444, 125-132.	4.3	34
56	Oxidation of isoeugenol to vanillin by the "H2O2–vanadate–pyrazine-2-carboxylic acid―reagent. Journal of Molecular Catalysis A, 2012, 363-364, 140-147.	4.8	49
57	Synthesis of Fragrance Ingredients by Tandem Hydroformylationâ€Cyclization of Limonene Catalyzed by Rhodium Complexes and Pyridinium <i>p</i> â€Toluenesulphonate. ChemCatChem, 2012, 4, 795-801.	3.7	22
58	Palladiumâ€Catalyzed Allylic Oxidation of Monoterpenic Alkenes with Molecular Oxygen. ChemCatChem, 2012, 4, 1382-1388.	3.7	17
59	Isomerization of α-pinene oxide over cerium and tin catalysts: Selective synthesis of trans-carveol and trans-sobrerol. Journal of Molecular Catalysis A, 2011, 345, 69-74.	4.8	52
60	Aerobic oxidation of monoterpenic alcohols catalyzed by ruthenium hydroxide supported on silica-coated magnetic nanoparticles. Journal of Catalysis, 2011, 282, 209-214.	6.2	64
61	Esterification of camphene over heterogeneous heteropoly acid catalysts: Synthesis of isobornyl carboxylates. Applied Catalysis A: General, 2011, 409-410, 82-86.	4.3	38
62	Nanocrystalline gold supported on Fe-, Ti- and Ce-modified hexagonal mesoporous silica as a catalyst for the aerobic oxidative esterification of benzyl alcohol. Applied Catalysis A: General, 2011, 397, 145-152.	4.3	48
63	Solvent-free chromium catalyzed aerobic oxidation of biomass-based alkenes as a route to valuable fragrance compounds. Applied Catalysis A: General, 2011, 399, 172-178.	4.3	28
64	Cobalt–iron magnetic composites as heterogeneous catalysts for the aerobic oxidation of thiols under alkali free conditions. Applied Catalysis A: General, 2011, 392, 151-157.	4.3	58
65	Palladiumâ€Catalyzed Aerobic Oxidation of Naturally Occurring Allylbenzenes as a Route to Valuable Fragrance and Pharmaceutical Compounds. Advanced Synthesis and Catalysis, 2010, 352, 1533-1538.	4.3	15
66	Heteropoly acid catalysts in the valorization of the essential oils: Acetoxylation of β-caryophyllene. Applied Catalysis A: General, 2010, 374, 87-94.	4.3	34
67	Isomerization of styrene oxide to phenylacetaldehyde over supported phosphotungstic heteropoly acid. Applied Catalysis A: General, 2010, 383, 217-220.	4.3	42
68	Tandem hydroformylation-acetalization of para-menthenic terpenes under non-acidic conditions. Applied Catalysis A: General, 2010, 380, 125-132.	4.3	37
69	Cobalt-catalyzed oxidation of terpenes: Co-MCM-41 as an efficient shape-selective heterogeneous catalyst for aerobic oxidation of isolongifolene under solvent-free conditions. Journal of Catalysis, 2009, 265, 72-79.	6.2	59
70	Palladiumâ€Catalyzed Oxidation of Phenylâ€Substituted Alkenes using Molecular Oxygen as the Sole Oxidant. Advanced Synthesis and Catalysis, 2009, 351, 2491-2495.	4.3	37
71	Hydroformylation of endocyclic double bonds in para-menthenic terpenes under mild conditions. Applied Catalysis A: General, 2009, 365, 231-236.	4.3	16
72	Phosphotungstic heteropoly acid as efficient heterogeneous catalyst for solvent-free isomerization of α-pinene and longifolene. Applied Catalysis A: General, 2009, 352, 188-192.	4.3	65

#	Article	IF	CITATIONS
73	Aerobic Palladium(II)/Copper(II)-Catalyzed Oxidation of Olefins under Chloride-Free Nonacidic Conditions. Organometallics, 2009, 28, 3186-3192.	2.3	34
74	Phosphotungstic Acid as a Versatile Catalyst for the Synthesis of Fragrance Compounds by αâ€Pinene Oxide Isomerization: Solventâ€Induced Chemoselectivity. Chemistry - A European Journal, 2008, 14, 6166-6172.	3.3	83
75	Copper atalyzed Oxybromination and Oxychlorination of Primary Aromatic Amines Using LiBr or LiCl and Molecular Oxygen. Advanced Synthesis and Catalysis, 2008, 350, 2052-2058.	4.3	60
76	Aromatization of para-menthenic terpenes by aerobic oxidative dehydrogenation catalyzed by p-benzoquinone. Applied Catalysis A: General, 2008, 351, 226-230.	4.3	22
77	Rhodium catalyzed hydroformylation of kaurane derivatives: A route to new diterpenes with potential bioactivity. Applied Catalysis A: General, 2008, 340, 212-219.	4.3	21
78	Hydroformylation of Monoterpenic Polyenes: Effect of the Conjugation of Double Bonds on Reactivity. Organometallics, 2008, 27, 4523-4531.	2.3	40
79	Rhodium-Catalyzed Hydroformylation of Isoprene:Â Unusual Accelerating Effects of Phosphorus Ligands and Gas Pressure. Organometallics, 2007, 26, 2211-2218.	2.3	27
80	Palladium-Catalyzed Oxidation of Monoterpenes:  Novel Aerobic Pd(II)/Cu(II)-Catalyzed Oxidation of Linalool under Chloride-Free Nonacidic Conditions. Organometallics, 2007, 26, 4003-4009.	2.3	30
81	Rhodium catalyzed hydroformylation of conjugated dienes: Remarkable accelerative effect of triphenylphosphine. Catalysis Communications, 2007, 8, 747-750.	3.3	31
82	A practical highly selective oxybromination of phenols with dioxygen. Tetrahedron Letters, 2007, 48, 6401-6404.	1.4	45
83	On the origin of diastereofacial selectivity in the interaction of β-pinene with rhodium carbonyl: A density functional study. Computational and Theoretical Chemistry, 2007, 816, 109-117.	1.5	15
84	Pd–heteropoly acid as a bifunctional heterogeneous catalyst for one-pot conversion of citronellal to menthol. Applied Catalysis A: General, 2007, 317, 171-174.	4.3	55
85	Rhodium catalyzed hydroformylation of monoterpenes containing a sterically encumbered trisubstituted endocyclic double bond under mild conditions. Applied Catalysis A: General, 2007, 326, 219-226.	4.3	27
86	Palladium-catalyzed oxidation of primary alcohols: Highly selective direct synthesis of acetals. Applied Catalysis A: General, 2007, 329, 1-6.	4.3	32
87	Novel highly selective catalytic oxychlorination of phenols. Chemical Communications, 2006, , 209-211.	4.1	75
88	Rhodium catalyzed hydroformylation of linalool. Applied Catalysis A: General, 2006, 309, 169-176.	4.3	24
89	Palladium-catalyzed oxidation of monoterpenes: Highly selective syntheses of allylic ethers from limonene. Journal of Molecular Catalysis A, 2006, 252, 5-11.	4.8	21
90	One-pot synthesis of diisobornyl ether from camphene using heteropoly acid catalysts. Journal of Molecular Catalysis A, 2006, 243, 258-263.	4.8	15

#	Article	IF	CITATIONS
91	Synthesis of 1,8-cineole and 1,4-cineole by isomerization of α-terpineol catalyzed by heteropoly acid. Journal of Molecular Catalysis A, 2006, 259, 99-102.	4.8	39
92	Aerobic oxychlorination of phenols catalyzed by copper(II) chloride. Applied Catalysis A: General, 2006, 309, 122-128.	4.3	49
93	Selective hydrogenation of myrcene catalyzed by sol–gel Pd/SiO2. Applied Catalysis A: General, 2005, 295, 52-58.	4.3	24
94	Palladium catalyzed oxidation of monoterpenes: NMR study of palladium(II)–monoterpene interactions. Journal of Organometallic Chemistry, 2005, 690, 2996-3003.	1.8	32
95	Isomerisation of α-pinene oxide over silica supported heteropoly acid H3PW12O40. Applied Catalysis A: General, 2005, 294, 106-110.	4.3	66
96	Selective hydrogenation of myrcene catalyzed by complexes of ruthenium, chromium, iridium and rhodium. Journal of Molecular Catalysis A, 2005, 239, 10-14.	4.8	19
97	Novel solvent free liquid-phase oxidation of β-pinene over heterogeneous catalysts based on Fe3â^'xMxO4 (M=Co and Mn). Applied Catalysis A: General, 2004, 269, 117-121.	4.3	36
98	Solvent-free liquid-phase autoxidation of monoterpenes catalyzed by sol–gel Co/SiO2. Journal of Molecular Catalysis A, 2004, 217, 139-144.	4.8	50
99	Palladium catalyzed transformations of monoterpenes: stereoselective deuteriation and oxidative dimerization of camphene. Journal of Organometallic Chemistry, 2004, 689, 302-308.	1.8	46
100	Propylene oxidation by palladium nitro and nitrato complexes: in situ NMR and IR studies. Journal of Organometallic Chemistry, 2004, 689, 2880-2887.	1.8	1
101	Palladium catalyzed oxidation of monoterpenes: multistep electron transfer catalytic systems Pd(OAc)2/benzoquinone/M(OAc)2 (M=Cu, Co or Mn) for the allylic oxidation of limonene with dioxygen. Applied Catalysis A: General, 2004, 258, 93-98.	4.3	46
102	Biphasic hydroformylation of monoterpenes employing Rh/TPPTS/CTAC: the role of the substrate in the mass transfer between the phases. Applied Catalysis A: General, 2004, 278, 57-63.	4.3	53
103	Cyclization of (+)-citronellal to (â^')-isopulegol catalyzed by H3PW12O40/SiO2. Catalysis Communications, 2004, 5, 425-429.	3.3	60
104	Sol–gel palladium composites: effect of the thermal treatment on the catalytic activity. Journal of Non-Crystalline Solids, 2004, 348, 195-200.	3.1	7
105	Characterization and catalytic activity studies of sol–gel Co–SiO2 nanocomposites. Materials Characterization, 2003, 50, 95-99.	4.4	20
106	Rhodium catalyzed hydroformylation of \hat{l}^2 -pinene and camphene: effect of phosphorous ligands and reaction conditions on diastereoselectivity. Journal of Organometallic Chemistry, 2003, 671, 150-157.	1.8	40
107	Hydration and acetoxylation of camphene catalyzed by heteropoly acid. Journal of Molecular Catalysis A, 2003, 192, 129-134.	4.8	43
108	Cobalt catalyzed autoxidation of monoterpenes in acetic acid and acetonitrile solutions. Journal of Molecular Catalysis A, 2003, 201, 71-77.	4.8	66

#	Article	IF	CITATIONS
109	Hydroformylation of myrcene: metal and ligand effects in the hydroformylation of conjugated dienes. New Journal of Chemistry, 2003, 27, 533.	2.8	52
110	Organometallic catalysis: some contributions to organic synthesis. Quimica Nova, 2003, 26, 242-248.	0.3	27
111	Elucidation of the stereochemistry of diterpene derivatives obtained by palladium catalyzed oxidative coupling-oxidation of camphene. Journal of the Brazilian Chemical Society, 2003, 14, 83-89.	0.6	9
112	Rhodium-catalyzed hydroformylation of allylbenzenes and propenylbenzenes: effect of phosphine and diphosphine ligands on chemo- and regioselectivity. Journal of Molecular Catalysis A, 2002, 179, 133-141.	4.8	47
113	Diastereoselective hydroformylation of camphene catalyzed by platinum/tin complexes. Journal of Molecular Catalysis A, 2002, 185, 17-23.	4.8	38
114	Palladium catalyzed oxidation of monoterpenes: novel oxidation of myrcene with dioxygen. Journal of Molecular Catalysis A, 2002, 185, 97-104.	4.8	15
115	Palladium/Heteropoly Acid Catalyzed Oxidative Coupling of 2-Methoxy-1,4-benzoquinone with Arenes. Journal of the Brazilian Chemical Society, 2002, 13, 110-114.	0.6	7
116	Hydration and acetoxylation of monoterpenes catalyzed by heteropoly acid. Journal of Molecular Catalysis A, 2001, 175, 33-42.	4.8	79
117	Palladium-catalyzed oxidation of monoterpenes: novel tandem oxidative coupling–oxidation of camphene by dioxygen. Journal of Molecular Catalysis A, 2001, 176, 23-27.	4.8	39
118	Platinum/tin catalyzed hydroformylation of naturally occurring monoterpenes. Journal of Molecular Catalysis A, 2000, 152, 15-24.	4.8	53
119	Synthesis of methyl acetate from methanol catalyzed by [(η5-C5H5)(phosphine)2RuX] and [(η5-C5H5)(phosphine)2Ru(SnX3)] (X=F, Cl, Br): ligand effect. Journal of Molecular Catalysis A, 2000, 164, 39-47.	4.8	28
120	Palladium-catalyzed oxidation of bicyclic monoterpenes by hydrogen peroxide. Applied Catalysis A: General, 1998, 174, 177-186.	4.3	40
121	NICKEL (II) CATALYZED SUBSTITUTION OF HALOGENS IN 1-HALO-1-CHALCOGENE ALKENES BY CHALCOGENATE ANIONS. Phosphorus, Sulfur and Silicon and the Related Elements, 1997, 126, 211-222.	1.6	8
122	Convenient one-pot synthesis of 4,8-dimethyl-bicyclo[3.3.1]non-7-en-2-ol via platinum/tin catalyzed hydroformylation/cyclization of limonene. Tetrahedron Letters, 1997, 38, 41-44.	1.4	42