Masaki Tahara

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4738698/publications.pdf Version: 2024-02-01

Μλελκι Τλήλολ

#	Article	IF	CITATIONS
1	Investigations of mechanical properties and deformation behaviors of the Cr modified Ti–Au shape memory alloys. Journal of Alloys and Compounds, 2022, 897, 163134.	5.5	6
2	Investigations of Deformation Behavior and Microstructure of Al Tailored Ti–Mo High Temperature Shape Memory Alloys during Isothermal Holding at 393 K. Micro, 2022, 2, 113-122.	2.0	4
3	Achievement of Room Temperature Superelasticity in Ti-Mo-Al Alloy System via Manipulation of ω Phase Stability. Materials, 2022, 15, 861.	2.9	3
4	New dislocation dissociation accompanied by anti-phase shuffling in the α″ martensite phase of a Ti alloy. Acta Materialia, 2022, 227, 117705.	7.9	4
5	Enhancement of the superelastic behavior of the Ti–Au–Cr–based shape memory alloys via the manipulations of annealing–treatments and Ta additions. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 847, 143312.	5.6	5
6	Phase constituent and microstructure manipulations via annealing for enhancements of mechanical property and functionalities of Ti–Au–Cr–Ta biomedical shape memory alloys. Journal of Alloys and Compounds, 2022, 920, 166016.	5.5	5
7	Promoted mechanical properties and functionalities via Ta–tailored Ti–Au–Cr shape memory alloys towards biomedical applications. Journal of the Mechanical Behavior of Biomedical Materials, 2022, 133, 105358.	3.1	4
8	Effect of 3d transition metal additions on the phase constituent, mechanical properties, and shape memory effect of near–eutectoid Ti–4Au biomedical alloys. Journal of Alloys and Compounds, 2021, 857, 157599.	5.5	16
9	Elaboration of magnetostrain-active NiMnGa particles/polymer layered composites. Materials Letters, 2021, 289, 129427.	2.6	9
10	Influence of the precipitates on the shape memory effect and superelasticity of the near–eutectoid Ti–Au–Fe alloy towards biomaterial applications. Intermetallics, 2021, 133, 107180.	3.9	11
11	Mechanical Properties Enhancement of the Au-Cu-Al Alloys via Phase Constitution Manipulation. Materials, 2021, 14, 3122.	2.9	1
12	Effect of Cr additions on the phase constituent, mechanical properties, and shape memory effect of near–eutectoid Ti–4Au towards the biomaterial applications. Journal of Alloys and Compounds, 2021, 867, 159037.	5.5	18
13	Microstructure of αÂ+Âβ dual phase formed from isothermal α″phase via novel decomposition pathway in metastable β-Ti alloy. Journal of Alloys and Compounds, 2021, 868, 159237.	5.5	11
14	Effects of Cr and Sn additives on the martensitic transformation and deformation behavior of Ti-Cr-Sn biomedical shape memory alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 822, 141668.	5.6	10
15	Evaluations of mechanical properties and shape memory behaviors of the aging–treated Ti–Au–Mo alloys. Materials Chemistry and Physics, 2021, 269, 124775.	4.0	5
16	Enhancement of the shape memory effect by the introductions of Cr and Sn into the β–Ti alloy towards the biomedical applications. Journal of Alloys and Compounds, 2021, 875, 160088.	5.5	11
17	Enhancement of mechanical properties and shape memory effect of Ti–Cr–based alloys via Au and Cu modifications. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 123, 104707. 	3.1	9
18	Mechanical property enhancement of the Ag–tailored Au–Cu–Al shape memory alloy via the ductile phase toughening. Intermetallics, 2021, 139, 107349.	3.9	3

Masaki Tahara

#	Article	IF	CITATIONS
19	Investigations of Effects of Intermetallic Compound on the Mechanical Properties and Shape Memory Effect of Ti–Au–Ta Biomaterials. Materials, 2021, 14, 5810.	2.9	7
20	Evaluation of the Shape Memory Effect by Micro-Compression Testing of Single Crystalline Ti-27Nb Ni-Free Alloy. Materials, 2020, 13, 110.	2.9	4
21	Effect of cross-sectional area reduction rate and alloy composition on the formation of <001>-fiber texture in Ti-Mo-Al-Zr alloy wire. MATEC Web of Conferences, 2020, 321, 11019.	0.2	0
22	Microstructural Evolution in βâ€Metastable Ti–Mo–Sn–Al Alloy During Isothermal Aging. Advanced Engineering Materials, 2019, 21, 1900416.	3.5	15
23	Phase Reaction and Diffusion Behavior between AuTi and CoTi Intermetallic Compounds. Materials Transactions, 2019, 60, 631-635.	1.2	1
24	Isothermal martensitic transformation behavior of Ti–Nb–O alloy. Materials Letters, 2019, 257, 126691.	2.6	8
25	Compressive Deformation Behavior and Magnetic Susceptibility of Au ₂ CuAl Biomedical Shape Memory Alloys. Materials Transactions, 2019, 60, 662-665.	1.2	2
26	Goss Orientation Evolution in Ti–5.5Mo–8Al–6Zr Shape Memory Alloy upon Heat Treatment. Materials Transactions, 2019, 60, 1890-1897.	1.2	1
27	An <i>In Situ</i> Observation of Slip Deformation in a Compressed Ti-Mo-Al Single Crystal. Materials Science Forum, 2018, 941, 1463-1467.	0.3	0
28	Development of ã€^001〉-fiber texture in cold-groove-rolled Ti-Mo-Al-Zr biomedical alloy. Materialia, 2018, 1, 52-61.	2.7	10
29	Brillouin characterization of slimmed polymer optical fibers for strain sensing with extremely wide dynamic range. Optics Express, 2018, 26, 28030.	3.4	6
30	Plastic Deformation Behavior of Single Crystalline Martensite in β-Titanium Shape Memory Alloy. Materia Japan, 2018, 57, 345-348.	0.1	0
31	Deformation of Biomedical AuCuAl-Based Shape Memory Alloy Micropillars. MRS Advances, 2017, 2, 1411-1415.	0.9	2
32	Effect of Sn and Zr content on superelastic properties of Ti-Mo-Sn-Zr biomedical alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 704, 72-76.	5.6	24
33	Plastic deformation behaviour of single-crystalline martensite of Ti-Nb shape memory alloy. Scientific Reports, 2017, 7, 15715.	3.3	31
34	Formation process of the incompatible martensite microstructure in a beta-titanium shape memory alloy. Acta Materialia, 2017, 124, 351-359.	7.9	15
35	Effect of Sn and Zr addition on the martensitic transformation behavior of Ti-Mo shape memory alloys. Journal of Alloys and Compounds, 2017, 695, 76-82.	5.5	32
36	Micro-compression study of Ni-Fe(Co)-Ga magnetic shape memory alloy for MEMS sensors. , 2017, , .		1

Masaki Tahara

#	Article	IF	CITATIONS
37	Martensitic Transformation and Mechanical Properties of AuCuAl-Based Biomedical Shape Memory Alloys Containing Various Quaternary Elements. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2016, 80, 71-76.	0.4	4
38	Compatibility at Junction Planes between Habit Plane Variants with Internal Twin in Ti-Ni-Pd Shape Memory Alloy. Materials Transactions, 2016, 57, 233-240.	1.2	11
39	Lattice Parameter Dependence of Kinematic Compatibility in Martensite Microstructure of Cubic-Orthorhombic Transformation. Materials Transactions, 2016, 57, 751-754.	1.2	0
40	Phase Constitution and Martensitic Transformation Behavior of Au-51Ti-18Co Biomedical Shape Memory Alloy Heat-Treated at 1173K to 1373K. Materials Science Forum, 2016, 879, 256-261.	0.3	1
41	Role of oxygen atoms in α″ martensite of Ti-20 at.% Nb alloy. Scripta Materialia, 2016, 112, 15-18.	5.2	40
42	Anisotropy of Young's Modulus in a Ti-Mo-Al-Zr Alloy with Goss Texture. Materials Transactions, 2016, 57, 1998-2001.	1.2	8
43	Effect of Zr Addition on Mechanical and Shape Memory Properties of Ti-5Mo-3Sn Alloys. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2015, 80, 37-44.	0.4	2
44	Effect of Annealing Temperature on Texture Formation of Ti-4Au-5Cr-8Zr Biomedical Superelastic Alloy. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2015, 80, 45-50.	0.4	2
45	Effect of Al and Cu Contents on Mechanical Properties of Au-Cu-Al Shape Memory Alloys. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2015, 80, 27-36.	0.4	7
46	Effect of Annealing Temperature on Microstructure and Superelastic Properties of Ti-Au-Cr-Zr Alloy. Materials Transactions, 2015, 56, 404-409.	1.2	18
47	Oxidation Behavior of Au-55 mol%Ti High Temperature Shape Memory Alloy during Heating in Ar-50 vol%O ₂ Environment. Materials Transactions, 2015, 56, 600-604.	1.2	3
48	Effect of Nb Addition on Martensitic Transformation Behavior of AuTi-15Co Based Biomedical Shape Memory Alloys. Materials Transactions, 2015, 56, 429-434.	1.2	5
49	Preferential Morphology of Self-accommodation Microstructure in Ti-Ni-Pd Shape Memory Alloy. Materials Today: Proceedings, 2015, 2, S549-S552.	1.8	4
50	The Effect of Aging Temperature on Morphology of α Phase in Ti-3Mo-6Sn-5Zr Shape Memory Alloy. Materials Today: Proceedings, 2015, 2, S817-S820.	1.8	1
51	Deformation Behavior of Ti-4Au-5Cr-8Zr Superelastic Alloy With or Without Containing Ti3Au Precipitates. Materials Today: Proceedings, 2015, 2, S821-S824.	1.8	5
52	Effect of Sn Content on Phase Constitution and Mechanical Properties of Ti-Cr-Sn Shape Memory Alloys. Materials Today: Proceedings, 2015, 2, S825-S828.	1.8	7
53	Formation Process of Triangular Morphology of Self-Accommodation Martensite in Ti-Nb-Al Shape Memory Alloy. MATEC Web of Conferences, 2015, 33, 06001.	0.2	0
54	Phase Constituent and Reverse Martensitic Transformation Temperature of PtTi-CoTi Diffusion Couple Heat-Treated at 1373K. Materials Research Society Symposia Proceedings, 2015, 1760, 163.	0.1	3

MASAKI TAHARA

#	Article	IF	CITATIONS
55	Incompatibility of Martensite Variant Clusters in Self-accommodation Microstructure in Ti-Ni-Pd High Temperature Shape Memory Alloy. Materials Research Society Symposia Proceedings, 2015, 1760, 193.	0.1	0
56	Wide-range temperature dependences of Brillouin scattering properties in polymer optical fiber. Japanese Journal of Applied Physics, 2014, 53, 042502.	1.5	32
57	Martensitic Transformation and Mechanical Properties of Fe-added Au-Cu-Al Shape Memory Alloy with Various Heat Treatment Conditions. Materials Research Society Symposia Proceedings, 2014, 1760, 1.	0.1	4
58	Heating-induced martensitic transformation and time-dependent shape memory behavior of Ti–Nb–O alloy. Acta Materialia, 2014, 80, 317-326.	7.9	44
59	Compressive Fracture Behavior of Bi-added Ni ₅₀ Mn ₂₈ Ga ₂₂ Ferromagnetic Shape Memory Alloys. Materials Research Society Symposia Proceedings, 2013, 1516, 139-144.	0.1	9
60	Nanodomain structure and its effect on abnormal thermal expansion behavior of a Ti–23Nb–2Zr–0.7Ta–1.2O alloy. Acta Materialia, 2013, 61, 4874-4886.	7.9	102
61	Role of interstitial atoms in the microstructure and non-linear elastic deformation behavior of Ti–Nb alloy. Journal of Alloys and Compounds, 2013, 577, S404-S407.	5.5	28
62	The strain rate sensitivity behavior in Ti based shape memory alloys. Transactions of the Materials Research Society of Japan, 2013, 38, 545-548.	0.2	1
63	Martensitic transformation and superelastic properties of titanium alloys containing interstitial elements. Keikinzoku/Journal of Japan Institute of Light Metals, 2012, 62, 257-262.	0.4	4
64	Lattice modulation and superelasticity in oxygen-added β-Ti alloys. Acta Materialia, 2011, 59, 6208-6218.	7.9	223
65	Effect of nitrogen addition and annealing temperature on superelastic properties of Ti–Nb–Zr–Ta alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 6844-6852.	5.6	50
66	SHAPE MEMORY EFFECT AND CYCLIC DEFORMATION BEHAVIOR OF Ti – Nb – N ALLOYS. Functional Materials Letters, 2009, 02, 79-82.	1.2	37
67	Cyclic deformation behavior of a Ti–26 at.% Nb alloy. Acta Materialia, 2009, 57, 2461-2469.	7.9	103
68	Effect of Nitrogen Addition on Superelasticity of Ti-Zr-Nb Alloys. Materials Transactions, 2009, 50, 2726-2730.	1.2	28
69	Effect of Nitrogen Addition on Superelasticity of Ti-Zr-Nb Alloys. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2008, 72, 955-959.	0.4	4
70	Effect of Cold-Rolling Rate on Texture in Ti-Mo-Al-Zr Shape Memory Alloy. Materials Science Forum, 0, 738-739, 262-266.	0.3	7
71	Martensitic Transformation and Related Properties of AuTi-FeTi Pseudobinary Alloys. Advanced Materials Research, 0, 922, 25-30.	0.3	6
72	Mechanical Properties of Ti-Fe-Sn Biomedical Alloys with or without Aging Treatment. Materials Science Forum, 0, 783-786, 2423-2428.	0.3	1

MASAKI TAHARA

#	Article	IF	CITATIONS
73	Determination of Preferred Morphology of Self-Accommodating Martensite in Ti-Nb-Al Shape Memory Alloy Using Optical Microscopy. Advanced Materials Research, 0, 922, 260-263.	0.3	1
74	Effect of Heat Treatment Condition on Texture in Ti-Mo-Al-Zr Shape Memory Alloy. Advanced Materials Research, 0, 922, 622-625.	0.3	3
75	Effect of Zr Addition on Martensitic Transformation in TiMoSn Alloy. Advanced Materials Research, 0, 922, 137-142.	0.3	5
76	Role of Interstitial Oxygen Atom on Martensitic Transformation of Ti-Nb Alloy. Advances in Science and Technology, 0, , .	0.2	1