Lúcia Chaves Simões

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4738135/publications.pdf

Version: 2024-02-01

172457 149698 3,339 63 29 56 citations h-index g-index papers 63 63 63 4076 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Microalgal-based removal of contaminants of emerging concern. Journal of Hazardous Materials, 2022, 423, 127153.	12.4	22
2	Biofilm formation under high shear stress increases resilience to chemical and mechanical challenges. Biofouling, 2022, 38, 1-12.	2.2	12
3	Chlorinated cyanurates and potassium salt of peroxymonosulphate as antimicrobial and antibiofilm agents for drinking water disinfection. Science of the Total Environment, 2022, 811, 152355.	8.0	14
4	Influence of surface materials on biofilm formation., 2022,, 45-63.		1
5	Phytochemicals Against Drug-Resistant Bacterial Biofilms and Use of Green Extraction Solvents to Increase Their Bioactivity. Advances in Experimental Medicine and Biology, 2022, , .	1.6	1
6	Occurrence of filamentous fungi in drinking water: their role on fungal-bacterial biofilm formation. Research in Microbiology, 2021, 172, 103791.	2.1	15
7	The Effects of Chemical and Mechanical Stresses on Bacillus cereus and Pseudomonas fluorescens Single- and Dual-Species Biofilm Removal. Microorganisms, 2021, 9, 1174.	3.6	10
8	Bacterial coaggregation in aquatic systems. Water Research, 2021, 196, 117037.	11.3	22
9	Methylobacterium oryzae Influences Isoepoxydon Dehydrogenase Gene Expression and Patulin Production by Penicillium expansum. Water (Switzerland), 2021, 13, 1427.	2.7	1
10	Biofilm control by ionic liquids. Drug Discovery Today, 2021, 26, 1340-1346.	6.4	18
11	Overview on the hydrodynamic conditions found in industrial systems and its impact in (bio)fouling formation. Chemical Engineering Journal, 2021, 418, 129348.	12.7	16
12	Legionella pneumophila. Trends in Microbiology, 2021, 29, 860-861.	7.7	25
13	LegionellaDB – A Database on Legionella Outbreaks. Trends in Microbiology, 2021, 29, 863-866.	7.7	7
14	Effect of quorum sensing and quenching molecules on inter-kingdom biofilm formation by <i>Penicillium expansum</i> and bacteria. Biofouling, 2020, 36, 965-976.	2.2	8
15	Emerging contaminants affect the microbiome of water systems—strategies for their mitigation. Npj Clean Water, 2020, 3, .	8.0	74
16	Copper Surfaces in Biofilm Control. Nanomaterials, 2020, 10, 2491.	4.1	26
17	The role of filamentous fungi in drinking water biofilm formation. , 2020, , 101-125.		3
18	Influence of surface copper content on <i>Stenotrophomonas maltophilia</i> biofilm control using chlorine and mechanical stress. Biofouling, 2020, 36, 1-13.	2.2	20

#	Article	IF	CITATIONS
19	Adhesion of filamentous fungi isolated from drinking water under different process conditions. Water Research, 2019, 164, 114951.	11.3	24
20	Prolonged exposure of Stenotrophomonas maltophilia biofilms to trace levels of clofibric acid alters antimicrobial tolerance and virulence. Chemosphere, 2019, 235, 327-335.	8.2	19
21	The role of surface copper content on biofilm formation by drinking water bacteria. RSC Advances, 2019, 9, 32184-32196.	3.6	16
22	<i>In vitro</i> assessment of inter-kingdom biofilm formation by bacteria and filamentous fungi isolated from a drinking water distribution system. Biofouling, 2019, 35, 1041-1054.	2.2	15
23	The effects of pharmaceutical and personal care products on the behavior of Burkholderia cepacia isolated from drinking water. International Biodeterioration and Biodegradation, 2019, 141, 87-93.	3.9	21
24	The action of chemical and mechanical stresses on single and dual species biofilm removal of drinking water bacteria. Science of the Total Environment, 2018, 631-632, 987-993.	8.0	31
25	Standardized reactors for the study of medical biofilms: a review of the principles and latest modifications. Critical Reviews in Biotechnology, 2018, 38, 657-670.	9.0	40
26	Biocides., 2018,, 478-478.		7
27	The effects of emerging environmental contaminants on Stenotrophomonas maltophilia isolated from drinking water in planktonic and sessile states. Science of the Total Environment, 2018, 643, 1348-1356.	8.0	72
28	The effects of sodium hypochlorite against selected drinking water-isolated bacteria in planktonic and sessile states. Science of the Total Environment, 2016, 565, 40-48.	8.0	58
29	Combinatorial approaches with selected phytochemicals to increase antibiotic efficacy against <i>Staphylococcus aureus</i> biofilms. Biofouling, 2016, 32, 1103-1114.	2.2	32
30	Antibacterial activity and mode of action of selected glucosinolate hydrolysis products against bacterial pathogens. Journal of Food Science and Technology, 2015, 52, 4737-4748.	2.8	91
31	Kinetics of biofilm formation by drinking water isolated <i>Penicillium expansum</i> . Biofouling, 2015, 31, 349-362.	2.2	19
32	Methods to study microbial adhesion on abiotic surfaces. AIMS Bioengineering, 2015, 2, 297-309.	1.1	9
33	The action of selected isothiocyanates on bacterial biofilm prevention and control. International Biodeterioration and Biodegradation, 2014, 86, 25-33.	3.9	58
34	What should be considered in the treatment of bacterial infections by multi-drug therapies: A mathematical perspective?. Drug Resistance Updates, 2014, 17, 51-63.	14.4	2
35	Extendedâ€spectrum βâ€lactamase and carbapenemaseâ€producing <i>Aeromonas</i> species in wild animals from Portugal. Veterinary Record, 2014, 174, 532-532.	0.3	12
36	An overview on the reactors to study drinking water biofilms. Water Research, 2014, 62, 63-87.	11.3	91

#	Article	IF	CITATIONS
37	Antimicrobial Activity of Selected Phytochemicals against Escherichia coli and Staphylococcus aureus and Their Biofilms. Pathogens, 2014, 3, 473-498.	2.8	151
38	Biofilms in drinking water: problems and solutions. RSC Advances, 2013, 3, 2520-2533.	3.6	142
39	Antibacterial Activity of Phenyl Isothiocyanate on Escherichia coli and Staphylococcus aureus. Medicinal Chemistry, 2013, 9, 756-761.	1.5	38
40	Proposal for a method to estimate nutrient shock effects in bacteria. BMC Research Notes, 2012, 5, 422.	1.4	12
41	Phytochemicals Against Drug-Resistant Microbes. , 2012, , 185-205.		11
42	A comparative study of drinking water biofilm monitoring with flow cell and Propellaâ,,¢ bioreactors. Water Science and Technology: Water Supply, 2012, 12, 334-342.	2.1	5
43	The effects of metabolite molecules produced by drinking water-isolated bacteria on their single and multispecies biofilms. Biofouling, 2011, 27, 685-699.	2.2	21
44	The effects of glutaraldehyde on the control of single and dual biofilms of <i> Bacillus cereus </i> > And <i> Pseudomonas fluorescens </i> > Biofouling, 2011, 27, 337-346.	2.2	33
45	Persister cells in a biofilm treated with a biocide. Biofouling, 2011, 27, 403-411.	2.2	37
46	Adhesion and biofilm formation on polystyrene by drinking water-isolated bacteria. Antonie Van Leeuwenhoek, 2010, 98, 317-329.	1.7	84
47	Influence of the Diversity of Bacterial Isolates from Drinking Water on Resistance of Biofilms to Disinfection. Applied and Environmental Microbiology, 2010, 76, 6673-6679.	3.1	135
48	A review of current and emergent biofilm control strategies. LWT - Food Science and Technology, 2010, 43, 573-583.	5.2	845
49	Species association increases biofilm resistance to chemical and mechanical treatments. Water Research, 2009, 43, 229-237.	11.3	133
50	The effects of a biocide and a surfactant on the detachment of Pseudomonas fluorescens from glass surfaces. International Journal of Food Microbiology, 2008, 121, 335-341.	4.7	62
51	Physiology and behavior of Pseudomonas fluorescens single and dual strain biofilms under diverse hydrodynamics stresses. International Journal of Food Microbiology, 2008, 128, 309-316.	4.7	37
52	Sodium dodecyl sulfate allows the persistence and recovery of biofilms of Pseudomonas fluorescensformed under different hydrodynamic conditions. Biofouling, 2008, 24, 35-44.	2.2	21
53	Intergeneric Coaggregation among Drinking Water Bacteria: Evidence of a Role for <i>Acinetobacter calcoaceticus</i> as a Bridging Bacterium. Applied and Environmental Microbiology, 2008, 74, 1259-1263.	3.1	88
54	Antagonism between <i>Bacillus cereus</i> and <i>Pseudomonas fluorescens</i> in planktonic systems and in biofilms. Biofouling, 2008, 24, 339-349.	2.2	60

#	Article	IF	CITATIONS
55	Biofilm Interactions between Distinct Bacterial Genera Isolated from Drinking Water. Applied and Environmental Microbiology, 2007, 73, 6192-6200.	3.1	151
56	Use of fluorescent in situ hybridisation for the visualisation of Helicobacter pylori in real drinking water biofilms. Water Science and Technology, 2007, 55, 387-393.	2.5	42
57	Potential of the adhesion of bacteria isolated from drinking water to materials. Journal of Basic Microbiology, 2007, 47, 174-183.	3.3	105
58	Antimicrobial mechanisms ofortho -phthalaldehyde action. Journal of Basic Microbiology, 2007, 47, 230-242.	3.3	39
59	Drinking water biofilm assessment of total and culturable bacteria under different operating conditions. Biofouling, 2006, 22, 91-99.	2.2	35
60	Comparative antibacterial potential of selected aldehyde-based biocides and surfactants against planktonic Pseudomonas fluorescens. Journal of Industrial Microbiology and Biotechnology, 2006, 33, 741-749.	3.0	51
61	Control of Flow-Generated Biofilms with Surfactants. Food and Bioproducts Processing, 2006, 84, 338-345.	3.6	89
62	The Role of Inter-Kingdom Interactions by Drinking Water-Isolated Microorganisms in Biofilm Development and Control. SSRN Electronic Journal, 0, , .	0.4	0
63	DESAFIOS NO ENSINO DA CIÊNCIA E TECNOLOGIA DOS BIOFILMES. , 0, , 190-198.		O