
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/473811/publications.pdf Version: 2024-02-01

LODDAN S DORED

#	Article	lF	CITATIONS
1	Evolving functions of endothelial cells in inflammation. Nature Reviews Immunology, 2007, 7, 803-815.	10.6	1,505
2	THE ROLE OF ENDOTHELIAL CELLS IN INFLAMMATION. Transplantation, 1990, 50, 537-544.	0.5	730
3	Selective Inhibition of NF-kappa B Activation by a Peptide That Blocks the Interaction of NEMO with the Ikappa B Kinase Complex. Science, 2000, 289, 1550-1554.	6.0	664
4	Dicer Dependent MicroRNAs Regulate Gene Expression and Functions in Human Endothelial Cells. Circulation Research, 2007, 100, 1164-1173.	2.0	656
5	Tumor necrosis factor receptor-associated factors (TRAFs). Oncogene, 2001, 20, 6482-6491.	2.6	593
6	Lymphocytes recognize human vascular endothelial and dermal fibroblast Ia antigens induced by recombinant immune interferon. Nature, 1983, 305, 726-729.	13.7	499
7	Tissue-engineered vascular grafts transform into mature blood vessels via an inflammation-mediated process of vascular remodeling. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 4669-4674.	3.3	495
8	Dicer-dependent endothelial microRNAs are necessary for postnatal angiogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 14082-14087.	3.3	453
9	Activation of Monocyte/Macrophage Functions Related to Acute Atheroma Complication by Ligation of CD40. Circulation, 1997, 96, 396-399.	1.6	389
10	Chronic Rejection. Immunity, 2001, 14, 387-397.	6.6	383
11	Interleukin-17 and Interferon-γ Are Produced Concomitantly by Human Coronary Artery–Infiltrating T Cells and Act Synergistically on Vascular Smooth Muscle Cells. Circulation, 2009, 119, 1424-1432.	1.6	369
12	Interferon-Î ³ elicits arteriosclerosis in the absence of leukocytes. Nature, 2000, 403, 207-211.	13.7	362
13	Control of Apoptosis during Angiogenesis by Survivin Expression in Endothelial Cells. American Journal of Pathology, 2000, 156, 393-398.	1.9	330
14	Cutting Edge: TNF-Induced MicroRNAs Regulate TNF-Induced Expression of E-Selectin and Intercellular Adhesion Molecule-1 on Human Endothelial Cells: Feedback Control of Inflammation. Journal of Immunology, 2010, 184, 21-25.	0.4	293
15	Cultured human endothelial cells express platelet-derived growth factor B chain: cDNA cloning and structural analysis. Nature, 1985, 316, 748-750.	13.7	291
16	TNF Signaling in Vascular Endothelial Cells. Experimental and Molecular Pathology, 2001, 70, 317-325.	0.9	280
17	Porcine aortic endothelial cells activate human T cells: Direct presentation of MHC antigens and costimulation by ligands for human CD2 and CD28. Immunity, 1994, 1, 57-63.	6.6	260
18	Endothelial injury mediated by cytotoxic T lymphocytes and loss of microvessels in chronic graft versus host disease. Lancet, The, 2002, 359, 2078-2083.	6.3	243

#	Article	IF	CITATIONS
19	Mechanisms of Endothelial Dysfunction, Injury, and Death. Annual Review of Pathology: Mechanisms of Disease, 2009, 4, 71-95.	9.6	211
20	INDUCIBLE EXPRESSION OF CLASS II MAJOR HISTOCOMPATIBILITY COMPLEX ANTIGENS AND THE IMMUNOGENICITY OF VASCULAR ENDOTHELIUM. Transplantation, 1986, 41, 141-146.	0.5	200
21	Inflammation and the Blood Microvascular System. Cold Spring Harbor Perspectives in Biology, 2015, 7, a016345.	2.3	200
22	A critical role for macrophages in neovessel formation and the development of stenosis in tissueâ€engineered vascular grafts. FASEB Journal, 2011, 25, 4253-4263.	0.2	199
23	A Phosphatidylinositol 3-Kinase/Akt Pathway, Activated by Tumor Necrosis Factor or Interleukin-1, Inhibits Apoptosis but Does Not Activate NFI®B in Human Endothelial Cells. Journal of Biological Chemistry, 2000, 275, 15458-15465.	1.6	193
24	Light dissociates enzymatically-cleaved rhodopsin into two different fragments. Journal of Molecular Biology, 1975, 95, 477-481.	2.0	186
25	Endothelial activation: intracellular signaling pathways. Arthritis Research, 2002, 4, S109.	2.0	179
26	T Lymphocyte–EndothelialCellInteractions. Annual Review of Immunology, 2004, 22, 683-709.	9.5	179
27	Suppression of Vascular Endothelial Growth Factor-Mediated Endothelial Cell Protection by Survivin Targeting. American Journal of Pathology, 2001, 158, 1757-1765.	1.9	177
28	Endothelial TGF-β signalling drives vascular inflammation and atherosclerosis. Nature Metabolism, 2019, 1, 912-926.	5.1	172
29	TRAIL Induces Apoptosis and Inflammatory Gene Expression in Human Endothelial Cells. Journal of Immunology, 2003, 171, 1526-1533.	0.4	162
30	Small-diameter biodegradable scaffolds for functional vascular tissue engineering in the mouse model. Biomaterials, 2008, 29, 1454-1463.	5.7	160
31	Three Dimensional Bioprinting of a Vascularized and Perfusable Skin Graft Using Human Keratinocytes, Fibroblasts, Pericytes, and Endothelial Cells. Tissue Engineering - Part A, 2020, 26, 227-238.	1.6	160
32	Endothelial Cells Require STAT3 for Protection against Endotoxin-induced Inf lammation. Journal of Experimental Medicine, 2003, 198, 1517-1525.	4.2	151
33	Vascularization and engraftment of a human skin substitute using circulating progenitor cellâ€derived endothelial cells. FASEB Journal, 2006, 20, 1739-1741.	0.2	151
34	Effects of cytokines on vascular endothelium: Their role in vascular and immune injury. Kidney International, 1989, 35, 969-975.	2.6	146
35	Cytomegalovirus-Infected Human Endothelial Cells Can Stimulate Allogeneic CD4+ Memory T Cells by Releasing Antigenic Exosomes. Journal of Immunology, 2009, 182, 1548-1559.	0.4	142
36	CAN GRAFT ENDOTHELIAL CELLS INITIATE A HOST ANTI-GRAFT IMMUNE RESPONSE?1. Transplantation, 1996, 61, 343-349.	0.5	141

#	Article	IF	CITATIONS
37	Tissueâ€engineered vascular grafts form neovessels that arise from regeneration of the adjacent blood vessel. FASEB Journal, 2011, 25, 2731-2739.	0.2	136
38	Antibody to human leukocyte antigen triggers endothelial exocytosis. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 1301-1306.	3.3	135
39	TNFR1―and TNFR2â€mediated signaling pathways in human kidney are cell typeâ€specific and differentially contribute to renal injury. FASEB Journal, 2005, 19, 1637-1645.	0.2	134
40	Alloantibody and Complement Promote T Cell–Mediated Cardiac Allograft Vasculopathy Through Noncanonical Nuclear Factor-κB Signaling in Endothelial Cells. Circulation, 2013, 128, 2504-2516.	1.6	132
41	Participation of blood vessel cells in human adaptive immune responses. Trends in Immunology, 2012, 33, 49-57.	2.9	127
42	Obstacles facing translational research in academic medical centers. FASEB Journal, 2001, 15, 2303-2313.	0.2	118
43	Comparison of human fetal liver, umbilical cord blood, and adult blood hematopoietic stem cell engraftment in NOD-scid/l³câ^'/â^', Balb/c-Rag1â^'/â^îĴ³câ~'/â^', and C.B-17-scid/bg immunodeficient mice. Human Immunology, 2009, 70, 790-802.	1.2	117
44	Expression of Tumor Necrosis Factor Receptors in Normal Kidney and Rejecting Renal Transplants. Laboratory Investigation, 2001, 81, 1503-1515.	1.7	116
45	Antigen Presentation by Vascular Cells. Frontiers in Immunology, 2017, 8, 1907.	2.2	116
46	AIP1/DAB2IP, a Novel Member of the Ras-GAP Family, Transduces TRAF2-induced ASK1-JNK Activation. Journal of Biological Chemistry, 2004, 279, 44955-44965.	1.6	111
47	Endothelial Cells in Allograft Rejection. Transplantation, 2008, 86, 1340-1348.	0.5	108
48	Immunologic Interactions of T Lymphocytes with Vascular Endothelium. Advances in Immunology, 1991, 50, 261-302.	1.1	106
49	CyTOF supports efficient detection of immune cell subsets from small samples. Journal of Immunological Methods, 2014, 415, 1-5.	0.6	106
50	HUMAN CD4+ T CELLS PROLIFERATE TO HLA-DR+ ALLOGENEIC VASCULAR ENDOTHELIUM. Transplantation, 1993, 56, 128-134.	0.5	105
51	Interleukin-11 Up-Regulates Survivin Expression in Endothelial Cells through a Signal Transducer and Activator of Transcription-3 Pathway. Laboratory Investigation, 2001, 81, 327-334.	1.7	105
52	IL-8 and angiogenesis: evidence that human endothelial cells lack receptors and do not respond to IL-8 in vitro. Cytokine, 1995, 7, 267-272.	1.4	104
53	Nanoparticle targeting to the endothelium during normothermic machine perfusion of human kidneys. Science Translational Medicine, 2017, 9, .	5.8	104
54	Large-Scale Culture and Selective Maturation of Human Langerhans Cells from Granulocyte Colony-Stimulating Factor-Mobilized CD34+Progenitors. Journal of Immunology, 2000, 164, 3600-3607.	0.4	102

#	Article	IF	CITATIONS
55	Interferon- \hat{I}^3 Axis in Graft Arteriosclerosis. Circulation Research, 2007, 100, 622-632.	2.0	102
56	Memory T Cells and Their Costimulators in Human Allograft Injury. Journal of Immunology, 2005, 175, 4886-4896.	0.4	101
57	A Sustained Reduction in lκB-β May Contribute to Persistent NF-κB Activation in Human Endothelial Cells. Journal of Biological Chemistry, 1996, 271, 16317-16322.	1.6	100
58	Human Endothelial Cell Presentation of Antigen and the Homing of Memory/Effector T Cells to Skin. Annals of the New York Academy of Sciences, 2001, 941, 12-25.	1.8	100
59	An Artificial Antigen-presenting Cell with Paracrine Delivery of IL-2 Impacts the Magnitude and Direction of the T Cell Response. Journal of Biological Chemistry, 2011, 286, 34883-34892.	1.6	99
60	Immunobiology of human vascular endothelium. Immunologic Research, 1999, 19, 225-232.	1.3	98
61	Caveolae Participate in Tumor Necrosis Factor Receptor 1 Signaling and Internalization in a Human Endothelial Cell Line. American Journal of Pathology, 2005, 166, 1273-1282.	1.9	98
62	Interacting Mechanisms in the Pathogenesis of Cardiac Allograft Vasculopathy. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 1609-1614.	1.1	98
63	Transcriptional Regulation of the Interleukin-2 Gene in Normal Human Peripheral Blood T Cells. Journal of Biological Chemistry, 1996, 271, 5369-5377.	1.6	95
64	Induction, differentiation, and remodeling of blood vessels after transplantation of Bcl-2-transduced endothelial cells. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 425-430.	3.3	95
65	Interferon-γ Induces Human Vascular Smooth Muscle Cell Proliferation and Intimal Expansion by Phosphatidylinositol 3-Kinase–Dependent Mammalian Target of Rapamycin Raptor Complex 1 Activation. Circulation Research, 2007, 101, 560-569.	2.0	95
66	Increased ICAM-1 Expression Causes Endothelial Cell Leakiness, Cytoskeletal Reorganization and Junctional Alterations. Journal of Investigative Dermatology, 2007, 127, 762-774.	0.3	95
67	Complement Membrane Attack Complex. American Journal of Pathology, 2020, 190, 1138-1150.	1.9	95
68	Human Vascular Endothelial Cells Stimulate Memory But Not Naive CD8+ T Cells to Differentiate into CTL Retaining an Early Activation Phenotype. Journal of Immunology, 2000, 164, 5146-5155.	0.4	94
69	Human Effector Memory CD4+ T Cells Directly Recognize Allogeneic Endothelial Cells In Vitro and In Vivo. Journal of Immunology, 2007, 179, 4397-4404.	0.4	91
70	Induction of Indoleamine 2,3-Dioxygenase in Vascular Smooth Muscle Cells by Interferon-γ Contributes to Medial Immunoprivilege. Journal of Immunology, 2007, 179, 5246-5254.	0.4	90
71	T cell–mediated vascular dysfunction of human allografts results from IFN-γ dysregulation of NO synthase. Journal of Clinical Investigation, 2004, 114, 846-856.	3.9	90
72	Urine TNF-Î $_{\pm}$ and IL-9 for clinical diagnosis of acute interstitial nephritis. JCI Insight, 2019, 4, .	2.3	89

#	Article	IF	CITATIONS
73	Dual delivery of VEGF and MCP-1 to support endothelial cell transplantation for therapeutic vascularization. Biomaterials, 2010, 31, 3054-3062.	5.7	85
74	CXCR3-dependent accumulation and activation of perivascular macrophages is necessary for homeostatic arterial remodeling to hemodynamic stresses. Journal of Experimental Medicine, 2010, 207, 1951-1966.	4.2	84
75	IL-17 Promotes Neutrophil-Mediated Immunity by Activating Microvascular Pericytes and Not Endothelium. Journal of Immunology, 2016, 197, 2400-2408.	0.4	84
76	IL-1α and IL-1β Are Endogenous Mediators Linking Cell Injury to the Adaptive Alloimmune Response. Journal of Immunology, 2007, 179, 6536-6546.	0.4	83
77	An Inflammatory Pathway of IFN-γ Production in Coronary Atherosclerosis. Journal of Immunology, 2007, 178, 592-604.	0.4	83
78	Inflammatory and Immune Responses in the Arterial Media. Circulation Research, 2015, 116, 312-322.	2.0	83
79	Interleukin-11 and Interleukin-6 Protect Cultured Human Endothelial Cells from H2O2-Induced Cell Death. American Journal of Respiratory Cell and Molecular Biology, 2003, 29, 513-522.	1.4	82
80	Tumor Necrosis Factor Alpha Increases Human Cerebral Endothelial Cell Gb3 and Sensitivity to Shiga Toxin. Infection and Immunity, 2001, 69, 1889-1894.	1.0	81
81	Spontaneous reversal of stenosis in tissue-engineered vascular grafts. Science Translational Medicine, 2020, 12, .	5.8	81
82	Antibody-Mediated Aplastic Anemia and Diffuse Fasciitis. New England Journal of Medicine, 1979, 300, 718-721.	13.9	80
83	Interferon-Î ³ Rapidly Increases Peptide Transporter (TAP) Subunit Expression and Peptide Transport Capacity in Endothelial Cells. Journal of Biological Chemistry, 1997, 272, 16585-16590.	1.6	80
84	Caveolin-1 Associates with TRAF2 to Form a Complex That Is Recruited to Tumor Necrosis Factor Receptors. Journal of Biological Chemistry, 2001, 276, 8341-8349.	1.6	80
85	Interleukin (IL)-1 promotes allogeneic T cell intimal infiltration and IL-17 production in a model of human artery rejection. Journal of Experimental Medicine, 2008, 205, 3145-3158.	4.2	80
86	Lanosterol Modulates TLR4-Mediated Innate Immune Responses in Macrophages. Cell Reports, 2017, 19, 2743-2755.	2.9	79
87	Histamine Antagonizes Tumor Necrosis Factor (TNF) Signaling by Stimulating TNF Receptor Shedding from the Cell Surface and Golgi Storage Pool. Journal of Biological Chemistry, 2003, 278, 21751-21760.	1.6	77
88	Focus on Fundamentals: Achieving Effective Nanoparticle Targeting. Trends in Molecular Medicine, 2018, 24, 598-606.	3.5	77
89	Ex vivo pretreatment of human vessels with siRNA nanoparticles provides protein silencing in endothelial cells. Nature Communications, 2017, 8, 191.	5.8	76
90	RIP1-mediated AIP1 Phosphorylation at a 14-3-3-binding Site Is Critical for Tumor Necrosis Factor-induced ASK1-JNK/p38 Activation. Journal of Biological Chemistry, 2007, 282, 14788-14796.	1.6	74

#	Article	IF	CITATIONS
91	Engraftment of a vascularized human skin equivalent. FASEB Journal, 2003, 17, 2250-2256.	0.2	73
92	IL-11 Activates Human Endothelial Cells to Resist Immune-Mediated Injury. Journal of Immunology, 2000, 164, 3837-3846.	0.4	72
93	Sustained delivery of proangiogenic microRNAâ€132 by nanoparticle transfection improves endothelial cell transplantation. FASEB Journal, 2014, 28, 908-922.	0.2	72
94	Cytoprotection of Human Umbilical Vein Endothelial Cells Against Apoptosis and CTL-Mediated Lysis Provided by Caspase-Resistant Bcl-2 Without Alterations in Growth or Activation Responses. Journal of Immunology, 2000, 164, 4665-4671.	0.4	71
95	Antigen Presentation by Human Microvascular Endothelial Cells Triggers ICAM-1-Dependent Transendothelial Protrusion by, and Fractalkine-Dependent Transendothelial Migration of, Effector Memory CD4+ T Cells. Journal of Immunology, 2008, 180, 8386-8392.	0.4	70
96	Claudin-5 Controls Intercellular Barriers of Human Dermal Microvascular but Not Human Umbilical Vein Endothelial Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 489-500.	1.1	70
97	TL1A Both Promotes and Protects from Renal Inflammation and Injury. Journal of the American Society of Nephrology: JASN, 2008, 19, 953-960.	3.0	68
98	Recruitment of CXCR3+ and CCR5+ T Cells and Production of Interferon-gamma-Inducible Chemokines in Rejecting Human Arteries. American Journal of Transplantation, 2005, 5, 1226-1236.	2.6	67
99	Explant Outgrowth, Propagation and Characterization of Human Pericytes. Microcirculation, 2010, 17, no-no.	1.0	67
100	Rapamycin-treated human endothelial cells preferentially activate allogeneic regulatory T cells. Journal of Clinical Investigation, 2013, 123, 1677-1693.	3.9	65
101	Interferonâ€Î³ plays a nonredundant role in mediating Tâ€cell―dependent outward vascular remodeling of allogeneic human coronary arteries. FASEB Journal, 2004, 18, 606-608.	0.2	64
102	Efficient Gene Disruption in Cultured Primary Human Endothelial Cells by CRISPR/Cas9. Circulation Research, 2015, 117, 121-128.	2.0	64
103	The Cathepsin B Death Pathway Contributes to TNF Plus IFN-γ-Mediated Human Endothelial Injury. Journal of Immunology, 2005, 175, 1858-1866.	0.4	63
104	Heparin Displaces Interferon-γ–Inducible Chemokines (IP-10, I-TAC, and Mig) Sequestered in the Vasculature and Inhibits the Transendothelial Migration and Arterial Recruitment of T Cells. Circulation, 2006, 114, 1293-1300.	1.6	63
105	Rapamycin antagonizes TNF induction of VCAM-1 on endothelial cells by inhibiting mTORC2. Journal of Experimental Medicine, 2014, 211, 395-404.	4.2	63
106	Endothelial cell lymphocyte function-associated antigen-3 and an unidentified ligand act in concert to provide costimulation to human peripheral blood CD4+ T cells. Cellular Immunology, 1991, 137, 150-163.	1.4	61
107	Human Placental Pericytes Poorly Stimulate and Actively Regulate Allogeneic CD4 T Cell Responses. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 183-189.	1.1	61
108	Identification of Endothelial Cell Junctional Proteins and Lymphocyte Receptors Involved in Transendothelial Migration of Human Effector Memory CD4+ T Cells. Journal of Immunology, 2011, 186, 1763-1768.	0.4	61

#	Article	IF	CITATIONS
109	Apoptosis-inducing Agents Cause Rapid Shedding of Tumor Necrosis Factor Receptor 1 (TNFR1). Journal of Biological Chemistry, 1999, 274, 13643-13649.	1.6	60
110	Interferon-Î ³ Augments CD95(APO-1/Fas) and Pro-Caspase-8 Expression and Sensitizes Human Vascular Endothelial Cells to CD95-Mediated Apoptosis. American Journal of Pathology, 2002, 161, 1485-1495.	1.9	60
111	Engineering of multifunctional gels integrating highly efficient growth factor delivery with endothelial cell transplantation. FASEB Journal, 2008, 22, 2949-2956.	0.2	60
112	Blockade of CD2-LFA-3 interactions protects human skin allografts in immunodeficient mouse/human chimeras. Nature Biotechnology, 1997, 15, 759-762.	9.4	59
113	MyD88-dependent, superoxide-initiated inflammation is necessary for flow-mediated inward remodeling of conduit arteries. Journal of Experimental Medicine, 2008, 205, 3159-3171.	4.2	59
114	MEK5 is Activated by Shear Stress, Activates ERK5 and Induces KLF4 to Modulate TNF Responses in Human Dermal Microvascular Endothelial Cells. Microcirculation, 2011, 18, 102-117.	1.0	59
115	Tumor Necrosis Factor Disrupts Claudin-5 Endothelial Tight Junction Barriers in Two Distinct NF-κB-Dependent Phases. PLoS ONE, 2015, 10, e0120075.	1.1	59
116	Tumor Necrosis Factor Receptor Expression and Signaling in Renal Cell Carcinoma. American Journal of Pathology, 2010, 177, 943-954.	1.9	58
117	Blocking MHC class II on human endothelium mitigates acute rejection. JCI Insight, 2016, 1, .	2.3	58
118	Selective labelling of the hydrophobic segments of intrinsic membrane proteins with a lipophilic photogenerated carbene. Nature, 1979, 280, 841-843.	13.7	57
119	HUMAN ALLOGENEIC VASCULAR REJECTION AFTER ARTERIAL TRANSPLANTATION AND PERIPHERAL LYMPHOID RECONSTITUTION IN SEVERE COMBINED IMMUNODEFICIENT MICE1. Transplantation, 1999, 67, 897-903.	0.5	57
120	Transendothelial Migration Enables Subsequent Transmigration of Neutrophils through Underlying Pericytes. PLoS ONE, 2013, 8, e60025.	1.1	57
121	Dermal Microvascular Injury in the Human Peripheral Blood Lymphocyte Reconstituted-Severe Combined Immunodeficient (HuPBL-SCID) Mouse/Skin Allograft Model Is T Cell Mediated and Inhibited by a Combination of Cyclosporine and Rapamycin. American Journal of Pathology, 1998, 153, 627-638.	1.9	56
122	Complement Membrane Attack Complexes Assemble NLRP3 Inflammasomes Triggering IL-1 Activation of IFN-γ–Primed Human Endothelium. Circulation Research, 2019, 124, 1747-1759.	2.0	56
123	Inhibition of Phosphatidylinositol 3-Kinase Sensitizes Vascular Endothelial Cells to Cytokine-initiated Cathepsin-dependent Apoptosis. Journal of Biological Chemistry, 2003, 278, 21295-21306.	1.6	55
124	VEGF Blockade Inhibits Lymphocyte Recruitment and Ameliorates Immune-Mediated Vascular Remodeling. Circulation Research, 2010, 107, 408-417.	2.0	55
125	Pericytes modulate endothelial sprouting. Cardiovascular Research, 2013, 100, 492-500.	1.8	55
126	AIP1 Prevents Graft Arteriosclerosis by Inhibiting Interferon-γ–Dependent Smooth Muscle Cell Proliferation and Intimal Expansion. Circulation Research, 2011, 109, 418-427.	2.0	54

#	Article	IF	CITATIONS
127	Neutralizing IL-6 Reduces Human Arterial Allograft Rejection by Allowing Emergence of CD161+ CD4+ Regulatory T Cells. Journal of Immunology, 2011, 187, 6268-6280.	0.4	54
128	IFN-α Induces Transcription of Hypoxia-Inducible Factor-1α to Inhibit Proliferation of Human Endothelial Cells. Journal of Immunology, 2008, 181, 1052-1062.	0.4	53
129	Complement membrane attack complexes activate noncanonical NF-κB by forming an Akt ⁺ NIK ⁺ signalosome on Rab5 ⁺ endosomes. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 9686-9691.	3.3	53
130	The potential roles of vascular endothelium in immune reactions. Human Immunology, 1990, 28, 258-262.	1.2	52
131	Immunopathology of human T cell responses to skin, artery and endothelial cell grafts in the human peripheral blood lymphocyte/severe combined immunodeficient mouse. Seminars in Immunopathology, 2003, 25, 167-180.	4.0	51
132	IL-11 Protects Human Microvascular Endothelium from Alloinjury In Vivo by Induction of Survivin Expression. Journal of Immunology, 2004, 172, 1391-1396.	0.4	50
133	Knockdown of TNFR1 by the sense strand of an ICAM-1 siRNA: dissection of an off-target effect. Nucleic Acids Research, 2007, 36, 1081-1097.	6.5	49
134	Human Aortic Smooth Muscle Cells Promote Arteriole Formation by Coengrafted Endothelial Cells. Tissue Engineering - Part A, 2009, 15, 165-173.	1.6	48
135	Blood Vessels in Allotransplantation. American Journal of Transplantation, 2015, 15, 1748-1754.	2.6	48
136	Differential functional roles of fibroblasts and pericytes in the formation of tissue-engineered microvascular networks in vitro. Npj Regenerative Medicine, 2020, 5, 1.	2.5	48
137	Endothelial cells augment the expression of CD40 ligand on newly activated human CD4+ T cells through a CD2/LFA-3 signaling pathway. European Journal of Immunology, 1996, 26, 610-617.	1.6	47
138	Induction of inducible NO synthase in bystander human T cells increases allogeneic responses in the vasculature. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 1313-1318.	3.3	47
139	Recent advances in allograft vasculopathy. Current Opinion in Organ Transplantation, 2017, 22, 1-7.	0.8	47
140	Regulation of Arterial-Venous Differences in Tumor Necrosis Factor Responsiveness of Endothelial Cells by Anatomic Context. American Journal of Pathology, 2008, 172, 1088-1099.	1.9	44
141	Inducibility and Expression of Microvascular Endothelial Adhesion Molecules in Lesional, Perilesional, and Uninvolved Skin of Psoriatic Patients. Journal of Investigative Dermatology, 1994, 103, 300-305.	0.3	43
142	Prolonged peak elevations in cytoplasmic free calcium ions, derived from intracellular stores, correlate with the extent of thrombin-stimulated exocytosis in single human umbilical vein endothelial cells. Journal of Cellular Physiology, 1994, 160, 545-554.	2.0	42
143	Interferon Induction of TAP1. Circulation Research, 1998, 83, 815-823.	2.0	39
144	Ceramide Is Not a Signal for Tumor Necrosis Factor–Induced Gene Expression but Does Cause Programmed Cell Death in Human Vascular Endothelial Cells. Circulation Research, 1996, 79, 736-747.	2.0	39

#	Article	IF	CITATIONS
145	Interferon α but Not Interleukin 12 Activates STAT4 Signaling in Human Vascular Endothelial Cells. Journal of Biological Chemistry, 2004, 279, 26789-26796.	1.6	38
146	Vascular smooth muscle cells derived from inbred swine induced pluripotent stem cells for vascular tissue engineering. Biomaterials, 2017, 147, 116-132.	5.7	38
147	Alloimmunity to Human Endothelial Cells Derived from Cord Blood Progenitors. Journal of Immunology, 2007, 179, 7488-7496.	0.4	37
148	Human Organ Culture: Updating the Approach to Bridge the Gap from In Vitro to In Vivo in Inflammation, Cancer, and Stem Cell Biology. Frontiers in Medicine, 2017, 4, 148.	1.2	37
149	Lysis of cold-storage-induced microvascular obstructions for ex vivo revitalization of marginal human kidneys. American Journal of Transplantation, 2021, 21, 161-173.	2.6	37
150	Early delayed-type hypersensitivity eosinophil infiltrates depend on T helper 2 cytokines and interferon-gamma via CXCR3 chemokines. Immunology, 2004, 111, 306-317.	2.0	36
151	TNFR2 ligation in human T regulatory cells enhances IL2-induced cell proliferation through the non-canonical NF-ήB pathway. Scientific Reports, 2018, 8, 12079.	1.6	36
152	The Death Domain of Tumor Necrosis Factor Receptor 1 Is Necessary but Not Sufficient for Golgi Retention of the Receptor and Mediates Receptor Desensitization. Laboratory Investigation, 2000, 80, 1185-1194.	1.7	35
153	Interferon-Î ³ Induces X-linked Inhibitor of Apoptosis-associated Factor-1 and Noxa Expression and Potentiates Human Vascular Smooth Muscle Cell Apoptosis by STAT3 Activation. Journal of Biological Chemistry, 2008, 283, 6832-6842.	1.6	35
154	Human Vascular Endothelial Cells Stimulate a Lower Frequency of Alloreactive CD8+Pre-CTL and Induce Less Clonal Expansion than Matching B Lymphoblastoid Cells: Development of a Novel Limiting Dilution Analysis Method Based on CFSE Labeling of Lymphocytes. Journal of Immunology, 2001, 166, 3846-3854.	0.4	34
155	Kaposi's Sarcoma-Associated Herpesvirus K3 and K5 Proteins Block Distinct Steps in Transendothelial Migration of Effector Memory CD4+ T Cells by Targeting Different Endothelial Proteins. Journal of Immunology, 2010, 184, 5186-5192.	0.4	33
156	Targeting of Tumor Necrosis Factor Receptor 1 to Low Density Plasma Membrane Domains in Human Endothelial Cells. Journal of Biological Chemistry, 2010, 285, 23868-23879.	1.6	33
157	IFN-γ Primes Intact Human Coronary Arteries and Cultured Coronary Smooth Muscle Cells to Double-Stranded RNA- and Self-RNA–Induced Inflammatory Responses by Upregulating TLR3 and Melanoma Differentiation-Associated Gene 5. Journal of Immunology, 2010, 185, 1283-1294.	0.4	33
158	Immortalization of human endothelial cells by murine sarcoma viruses, without morphologic transformation. Journal of Cellular Physiology, 1988, 134, 47-56.	2.0	32
159	An endothelial microRNA-1–regulated network controls eosinophil trafficking in asthma and chronic rhinosinusitis. Journal of Allergy and Clinical Immunology, 2020, 145, 550-562.	1.5	31
160	Human TNF Can Induce Nonspecific Inflammatory and Human Immune-Mediated Microvascular Injury of Pig Skin Xenografts in Immunodeficient Mouse Hosts. Journal of Immunology, 2000, 164, 6601-6609.	0.4	30
161	TCR Signaling Antagonizes Rapid IP-10-Mediated Transendothelial Migration of Effector Memory CD4+ T Cells. Journal of Immunology, 2007, 178, 3237-3243.	0.4	30
162	Endothelial Cell–Derived Interleukin-18 Released During Ischemia Reperfusion Injury Selectively Expands T Peripheral Helper Cells to Promote Alloantibody Production. Circulation, 2020, 141, 464-478.	1.6	30

#	Article	IF	CITATIONS
163	Cutting Edge: Internalization of Transduced E-Selectin by Cultured Human Endothelial Cells: Comparison of Dermal Microvascular and Umbilical Vein Cells and Identification of a Phosphoserine-Type Di-leucine Motif. Journal of Immunology, 2002, 168, 2091-2095.	0.4	29
164	Activation of Signal Transducer and Activator of Transcription 1 (STAT1) Is Not Sufficient for the Induction of STAT1-dependent Genes in Endothelial Cells. Journal of Biological Chemistry, 2002, 277, 8012-8021.	1.6	29
165	ZFYVE21 is a complement-induced Rab5 effector that activates non-canonical NF-κB via phosphoinosotide remodeling of endosomes. Nature Communications, 2019, 10, 2247.	5.8	29
166	Expression of Silencer of Death Domains and Death-Receptor-3 in Normal Human Kidney and in Rejecting Renal Transplants. American Journal of Pathology, 2003, 163, 401-411.	1.9	28
167	Immunomodulatory Properties of FK734, a Humanized Anti-CD28 Monoclonal Antibody With Agonistic and Antagonistic Activities. Transplantation, 2007, 83, 304-313.	0.5	28
168	Development of a Humanized Mouse Model to Study the Role of Macrophages in Allograft Injury. Transplantation, 2009, 87, 189-197.	0.5	28
169	Vascular endothelial cells enhance T cell responses by markedly augmenting IL-2 concentrations. Cellular Immunology, 1989, 118, 166-177.	1.4	27
170	Endothelial Cells Promote Human Immunodeficiency Virus Replication in Nondividing Memory T Cells via Nef-, Vpr-, and T-Cell Receptor-Dependent Activation of NFAT. Journal of Virology, 2005, 79, 11194-11204.	1.5	27
171	Human Endothelial Cells Enhance Human Immunodeficiency Virus Type 1 Replication in CD4+ T Cells in a Nef-Dependent Manner In Vitro and In Vivo. Journal of Virology, 2005, 79, 264-276.	1.5	27
172	Endothelial Cell-T Lymphocyte Interactions: iP-10 Stimulates Rapid Transendothelial Migration of Human Effector but not Central Memory CD4+ T Cells. Requirements for Shear Stress and Adhesion Molecules. Transplantation, 2006, 82, S9-S14.	0.5	27
173	TCR-Driven Transendothelial Migration of Human Effector Memory CD4 T Cells Involves Vav, Rac, and Myosin IIA. Journal of Immunology, 2013, 190, 3079-3088.	0.4	26
174	Symptoms and Clinical Course of EHEC O104 Infection in Hospitalized Patients: A Prospective Single Center Study. PLoS ONE, 2013, 8, e55278.	1.1	26
175	TCFâ€Î² receptor 1 inhibition prevents stenosis of tissueâ€engineered vascular grafts by reducing host mononuclear phagocyte activation. FASEB Journal, 2016, 30, 2627-2636.	0.2	26
176	Endothelial Cell Function and Dysfunction in Critically Ill Children. Pediatrics, 2017, 140, .	1.0	26
177	Transglutaminase modifies the carboxy-terminal intracellular region of HLA-A and -B antigens. Nature, 1981, 289, 819-821.	13.7	25
178	Immune Accessory Functions of Human Endothelial Cells Are Modulated by Overexpression of B7-H1 (PDL1). Human Immunology, 2006, 67, 568-578.	1.2	25
179	Reperfusion Injury Intensifies the Adaptive Human T Cell Alloresponse in a Human-Mouse Chimeric Artery Model. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 353-360.	1.1	25
180	Coronavirus Disease 2019 (COVID-19) Coronary Vascular Thrombosis. American Journal of Pathology, 2022, 192, 112-120.	1.9	25

#	Article	IF	CITATIONS
181	Bcl-2 Transduction Protects Human Endothelial Cell Synthetic Microvessel Grafts from Allogeneic T Cells In Vivo. Journal of Immunology, 2004, 173, 3020-3026.	0.4	24
182	Paracrine exchanges of molecular signals between alginate-encapsulated pericytes and freely suspended endothelial cells within a 3D protein gel. Biomaterials, 2013, 34, 8899-8908.	5.7	24
183	Endothelial cellâ€secreted MIF reduces pericyte contractility and enhances neutrophil extravasation. FASEB Journal, 2019, 33, 2171-2186.	0.2	24
184	Porcine Endothelial Cells, Unlike Human Endothelial Cells, Can Be Killed by Human CTL Via Fas Ligand and Cannot Be Protected by Bcl-2. Journal of Immunology, 2002, 169, 6850-6855.	0.4	23
185	Poly(amine-co-ester) nanoparticles for effective Nogo-B knockdown in the liver. Journal of Controlled Release, 2019, 304, 259-267.	4.8	23
186	Peroxisome Proliferator–Activated Receptor-γ Agonists Prevent In Vivo Remodeling of Human Artery Induced by Alloreactive T Cells. Circulation, 2011, 124, 196-205.	1.6	22
187	Development of a model system for preliminary evaluation of tissue-engineered vascular conduits. Journal of Pediatric Surgery, 2006, 41, 787-791.	0.8	21
188	Human Allograft Arterial Injury Is Ameliorated by Sirolimus and Cyclosporine and Correlates with Suppression of Interferon-??. Transplantation, 2006, 81, 559-566.	0.5	21
189	TNF, acting through inducibly expressed TNFR2, drives activation and cell cycle entry of c-Kit+ cardiac stem cells in ischemic heart disease. Stem Cells, 2013, 31, 1881-1892.	1.4	21
190	Complement-activated interferon-γ–primed human endothelium transpresents interleukin-15 to CD8+ T cells. Journal of Clinical Investigation, 2020, 130, 3437-3452.	3.9	21
191	PECâ€A: An immortalized porcine aortic endothelial cell. Xenotransplantation, 1995, 2, 79-87.	1.6	20
192	Is host endothelium a silver lining for allografts?. Lancet, The, 2001, 357, 2-3.	6.3	20
193	HUMAN T CELLS INFILTRATE AND INJURE PIG CORONARY ARTERY GRAFTS WITH ACTIVATED BUT NOT QUIESCENT ENDOTHELIUM IN IMMUNODEFICIENT MOUSE HOSTS1. Transplantation, 2001, 71, 1622-1630.	0.5	20
194	Interferon-Gamma Induces Prolyl Hydroxylase (PHD)3 Through a STAT1-Dependent Mechanism in Human Endothelial Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 1363-1369.	1.1	20
195	Polarized Granzyme Release Is Required for Antigen-Driven Transendothelial Migration of Human Effector Memory CD4 T Cells. Journal of Immunology, 2014, 193, 5809-5815.	0.4	19
196	A p190BRhoGAP mutation and prolonged RhoB activation in fatal systemic capillary leak syndrome. Journal of Experimental Medicine, 2017, 214, 3497-3505.	4.2	19
197	Thrombin and histamine rapidly stimulate the phosphorylation of the myristoylated alanine-rich C-kinase substrate in human umbilical vein endothelial cells: Evidence for distinct patterns of protein kinase activation. Journal of Cellular Physiology, 1992, 152, 166-176.	2.0	18
198	Airway hyper-reactivity mediated by B-1 cell immunoglobulin M antibody generating complement C5a at 1 day post-immunization in a murine hapten model of non-atopic asthma. Immunology, 2004, 113, 234-245.	2.0	18

#	Article	IF	CITATIONS
199	Amelioration of Human Allograft Arterial Injury by Atorvastatin or Simvastatin Correlates With Reduction of Interferon-Î ³ Production by Infiltrating T Cells. Transplantation, 2008, 86, 719-727.	0.5	18
200	Human Vascular Smooth Muscle Cells Lack Essential Costimulatory Molecules to Activate Allogeneic Memory T Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 1795-1801.	1.1	18
201	Mural Cell-Specific Deletion of Cerebral Cavernous Malformation 3 in the Brain Induces Cerebral Cavernous Malformations. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, 2171-2186.	1.1	18
202	Desensitization of Signaling by Oncostatin M in Human Vascular Cells Involves Cytoplasmic Tyr Residue 759 in gp130 but Is Not Mediated by Either Src Homology 2 Domain-containing Tyrosine Phosphatase 2 or Suppressor of Cytokine Signaling 3. Journal of Biological Chemistry, 2003, 278, 25014-25023.	1.6	17
203	CXCL12 Induction of Inducible Nitric Oxide Synthase in Human CD8 T Cells. Journal of Heart and Lung Transplantation, 2008, 27, 1333-1339.	0.3	17
204	A composite model of the human postcapillary venule for investigation of microvascular leukocyte recruitment. FASEB Journal, 2014, 28, 1166-1180.	0.2	17
205	Infantile Hemangiomas Exhibit Neural Crest and Pericyte Markers. Annals of Plastic Surgery, 2015, 74, 230-236.	0.5	17
206	Progenitor-derived human endothelial cells evade alloimmunity by CRISPR/Cas9-mediated complete ablation of MHC expression. JCI Insight, 2019, 4, .	2.3	17
207	Significant Differences in Antigen-Induced Transendothelial Migration of Human CD8 and CD4 T Effector Memory Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 1910-1918.	1.1	16
208	Tumor Necrosis Factor-α and IL-17A Activation Induces Pericyte-Mediated Basement Membrane Remodeling in Human Neutrophilic Dermatoses. American Journal of Pathology, 2017, 187, 1893-1906.	1.9	16
209	Interferon- \hat{I}^3 converts human microvascular pericytes into negative regulators of alloimmunity through induction of indoleamine 2,3-dioxygenase 1. JCI Insight, 2018, 3, .	2.3	16
210	Tumor necrosis factor receptor 2-signaling in CD133-expressing cells in renal clear cell carcinoma. Oncotarget, 2016, 7, 24111-24124.	0.8	16
211	Is hypertension an autoimmune disease?. Journal of Clinical Investigation, 2014, 124, 4234-4236.	3.9	13
212	Angiotensin II receptor I blockade prevents stenosis of tissue engineered vascular grafts. FASEB Journal, 2018, 32, 6822-6832.	0.2	13
213	Interferon-γ–Mediated Allograft Rejection Exacerbates Cardiovascular Disease of Hyperlipidemic Murine Transplant Recipients. Circulation Research, 2015, 117, 943-955.	2.0	12
214	Vascular cells have limited capacities to activate and differentiate T cells: Implications for transplant vascular sclerosis. Transplant Immunology, 1997, 5, 251-254.	0.6	11
215	Cellular and molecular biology of cardiac transplant rejection. Journal of Nuclear Cardiology, 2000, 7, 669-685.	1.4	11
216	FOXO3a Regulates Oxygen-responsive Expression of Tumor Necrosis Factor Receptor 2 in Human Dermal Microvascular Endothelial Cells, Journal of Biological Chemistry, 2009, 284, 19331-19339	1.6	11

#	Article	IF	CITATIONS
217	Generation of NO by Bystander Human CD8 T Cells Augments Allogeneic Responses by Inhibiting Cytokine Deprivation-Induced Cell Death. American Journal of Transplantation, 2009, 9, 2281-2291.	2.6	11
218	Lipopolysaccharide Can Trigger a Cathepsin B-Dependent Programmed Death Response in Human Endothelial Cells. American Journal of Pathology, 2009, 175, 1124-1135.	1.9	11
219	AIP1 in Graft Arteriosclerosis. Trends in Cardiovascular Medicine, 2011, 21, 229-233.	2.3	11
220	Antiapoptotic Activities of Bcl-2 Correlate with Vascular Maturation and Transcriptional Modulation of Human Endothelial Cells. Endothelium: Journal of Endothelial Cell Research, 2008, 15, 59-71.	1.7	10
221	Just the FACS or Stalking the Elusive Circulating Endothelial Progenitor Cell. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 837-838.	1.1	10
222	Tumor necrosis factorâ€induced ArhGEF10 selectively activates RhoB contributing to human microvascular endothelial cell tight junction disruption. FASEB Journal, 2021, 35, e21627.	0.2	10
223	Cardiac allograft vasculopathy: current review and future research directions. Cardiovascular Research, 2021, 117, 2624-2638.	1.8	10
224	An Implantable Vascularized Protein Gel Construct That Supports Human Fetal Hepatoblast Survival and Infection by Hepatitis C Virus in Mice. PLoS ONE, 2010, 5, e9987.	1.1	9
225	Complement-activated human endothelial cells stimulate increased polyfunctionality in alloreactive T cells. American Journal of Transplantation, 2021, 21, 1902-1909.	2.6	9
226	<scp>3D</scp> bioprinting of an implantable xenoâ€free vascularized human skin graft. Bioengineering and Translational Medicine, 2023, 8, .	3.9	9
227	Rat hepatocyte engraftment in severe combined immunodeficient x beige mice using mouse-specific anti-fas antibody. Xenotransplantation, 2006, 13, 53-62.	1.6	8
228	Interleukin-17 and Atherosclerotic Vascular Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 1465-1466.	1.1	8
229	Controlled protein delivery in the generation of microvascular networks. Drug Delivery and Translational Research, 2015, 5, 75-88.	3.0	8
230	A 3D triâ€culture system reveals that activin receptorâ€like kinase 5 and connective tissue growth factor drive human glomerulosclerosis. Journal of Pathology, 2017, 243, 390-400.	2.1	8
231	Alloimmune-Mediated Vascular Remodeling of Human Coronary Artery Grafts in Immunodeficient Mouse Recipients Is Independent of Preexisting Atherosclerosis. Transplantation, 2007, 83, 1501-1505.	0.5	7
232	Regulation of human T cell responses by dNP2-ctCTLA-4 inhibits human skin and microvessel graft rejection. Biomaterials, 2018, 183, 128-138.	5.7	7
233	Ex vivo isolated human vessel perfusion system for the design and assessment of nanomedicines targeted to the endothelium. Bioengineering and Translational Medicine, 2020, 5, e10154.	3.9	7
234	Tumor necrosis factor receptorâ€2 signaling pathways promote survival of cancer stemâ€like CD133 ⁺ cells in clear cell renal carcinoma. FASEB BioAdvances, 2020, 2, 126-144.	1.3	7

#	Article	IF	CITATIONS
235	Coagulation factor V is a T-cell inhibitor expressed by leukocytes in COVID-19. IScience, 2022, 25, 103971.	1.9	7
236	Tumor necrosis factor regulation of major histocompatibility complex gene expression. Immunologic Research, 1991, 10, 141-155.	1.3	6
237	Quantitative microscopy-based measurements of circulating nanoparticle concentration using microliter blood volumes. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 1863-1867.	1.7	6
238	Divergent TCR-Initiated Calcium Signals Govern Recruitment versus Activation of Human Alloreactive Effector Memory T Cells by Endothelial Cells. Journal of Immunology, 2018, 201, 3167-3174.	0.4	6
239	Aortic Interposition Grafts: A Model of Rejection or Rejection of the Model?. American Journal of Transplantation, 2002, 2, 201-202.	2.6	5
240	Native human collagen type I provides a viable physiologically relevant alternative to xenogeneic sources for tissue engineering applications: A comparative in vitro and in vivo study. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2022, , .	1.6	5
241	Sera From Children After Cardiopulmonary Bypass Reduces Permeability of Capillary Endothelial Cell Barriers. Pediatric Critical Care Medicine, 2018, 19, 609-618.	0.2	4
242	Differential inflammatory responses of the native left and right ventricle associated with donor heart preservation. Physiological Reports, 2021, 9, e15004.	0.7	4
243	Vascular Endothelial Cells as Immunological Targets in Atheroscleroisis. , 2012, , 87-114.		4
244	Chapter 4 Complete Primary Structure of Human Histocompatibility Antigen Hla-B7: Evolutionary and Functional Implications. Current Topics in Developmental Biology, 1980, 14, 97-113.	1.0	3
245	ArhGEF12 activates Rap1A and not RhoA in human dermal microvascular endothelial cells to reduce tumor necrosis factorâ€induced leak. FASEB Journal, 2022, 36, e22254.	0.2	3
246	[34] Proteolysis of rhodopsin. Methods in Enzymology, 1982, 81, 236-239.	0.4	2
247	11 Tumour necrosis factor is trafficked to a mitochondrial tumour necrosis factor binding protein. Biochemical Society Transactions, 1998, 26, S316-S316.	1.6	2
248	Immunologic Frontiers of Transplantation. Immunity, 2001, 14, 345-346.	6.6	2
249	Charles A. Janeway, Jr. (1943-2003). Cell, 2003, 113, 433-434.	13.5	2
250	Transfer of Human Leukocytes into Double-Knockout Pfpâ^'/â^'Rag2â^'/â^' Mice Grafted with Human Skin: Increased Accumulation of Neutrophils in Human Dermal Microvessels. Transplantation, 2004, 78, 1557-1559.	0.5	2
251	Physiology and Pathobiology of Microvascular Endothelium. , 2008, , 37-55.		2
252	Signaling through tumor necrosis receptor 2 induces stem cell marker in CD133+ regenerating tubular epithelial cells in acute cell-mediated rejection of human renal allografts. American Journal of Transplantation, 2020, 20, 2380-2391.	2.6	2

#	Article	IF	CITATIONS
253	Co-Expression and Functional Interactions of Death Receptor 3 and E-Selectin in Clear Cell Renal Cell Carcinoma. American Journal of Pathology, 2022, 192, 722-736.	1.9	2
254	Wanted: An Endothelial Cell Targeting Atlas for Nanotherapeutic Delivery in Allograft Organs. American Journal of Transplantation, 2022, , .	2.6	2
255	Tumor Necrosis Factor. , 2007, , 261-265.		1
256	Tissue-Engineered Microvasculature to Reperfuse Isolated Renal Glomeruli. Tissue Engineering - Part A, 2015, 21, 2673-2679.	1.6	1
257	A digital pathology tool for quantification of color features in histologic specimens. Bioengineering and Translational Medicine, 2022, 7, e10242.	3.9	1
258	VASCULAR REJECTION AFTER ARTERIAL TRANSPLANTATION AND PERIPHERAL LYMPHOID RECONSTITUTION IN SCID MICE. Transplantation, 1998, 66, S47.	0.5	1
259	Mitochondrial fission in allograft endothelial cells: A novel actionable target. American Journal of Transplantation, 2022, 22, 337-338.	2.6	1
260	Continuity and Change. Immunity, 2000, 12, 119.	6.6	0
261	Tucker Collins, M.D., Ph.D., 1952–2007. American Journal of Pathology, 2008, 172, 855-856.	1.9	0
262	Engineered molecular delivery for control and enhancement of transplanted endothelial cell fate in tissue engineering. , 2009, , .		0
263	Human hepatic stellate cells and hepatocyte coâ€cultures maintain differentiation in vitro and in vivo. FASEB Journal, 2008, 22, 465.3.	0.2	0