
Manuel Garcia-Mendez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4738089/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	TiOxNy Thin Film Sputtered on a Fiber Ball Lens as Saturable Absorber for Passive Q-Switched Generation of a Single-Tunable/Dual-Wavelength Er-Yb Double Clad Fiber Laser. Nanomaterials, 2020, 10, 923.	4.1	5
2	Large depth of focus plasmonic metalenses based on Fresnel biprism. AIP Advances, 2020, 10, 045025.	1.3	2
3	Characterization of Rhodamine 110 adsorbed on carbon-based electrospun nanofibers decorated with gold nanoparticles by Raman spectroscopy and SERS. Materials Research Express, 2019, 6, 125012.	1.6	1
4	Lossy Mode Resonance Generation on Sputtered Aluminum-Doped Zinc Oxide Thin Films Deposited on Multimode Optical Fiber Structures for Sensing Applications in the 1.55 µm Wavelength Range. Sensors, 2019, 19, 4189.	3.8	11
5	Efficient and Directional Excitation of Surface Plasmon Polaritons by Oblique Incidence on Metallic Ridges. Plasmonics, 2018, 13, 1935-1940.	3.4	6
6	Classical Plasmonics: Wave Propagation Control at Subwavelength Scale. Nano, 2015, 10, 1530005.	1.0	5
7	The influence of Ce doping on the structural and optoelectronic properties of RF-sputtered ZnO films. Optical and Quantum Electronics, 2015, 47, 2637-2648.	3.3	17
8	Chemical Characterization of DC-Sputtered In ₂ O ₃ Films with a Top SnO ₂ Layer. Journal of Nano Research, 2015, 30, 86-95.	0.8	4
9	Investigation of the annealing effects on the structural and optoelectronic properties of RF-sputtered ZnO films studied by the Drude–Lorentz model. Applied Physics A: Materials Science and Processing, 2015, 120, 1375-1382.	2.3	12
10	Developing novel gas sensors for NO2 detection based on Ce(1-x)MXO2, {M = Ru, In} solid solutions. Journal of Electroceramics, 2012, 28, 34-44.	2.0	5
11	Ce _(1-x) M _X O ₂ , {M=Ru, In} Solid Solutions as Novel Gas Sensors for CO Detection. Journal of Nano Research, 2011, 14, 135-143.	0.8	5
12	STRUCTURAL PROPERTIES OF AlN FILMS WITH OXYGEN CONTENT DEPOSITED BY REACTIVE MAGNETRON SPUTTERING: XRD AND XPS CHARACTERIZATION. Surface Review and Letters, 2011, 18, 23-31.	1.1	28
13	CHARACTERIZATION OF AIN THIN FILMS FABRICATED BY REACTIVE DC SPUTTERING: EXPERIMENTAL MEASUREMENTS AND HÜCKEL CALCULATIONS. International Journal of Modern Physics B, 2009, 23, 2233-2251.	2.0	11
14	DEPOSITION OF AIN AND OXIDIZED AIN THIN-FILMS BY REACTIVE SPUTTERING: CORRELATION BETWEEN FILM GROWTH AND DEPOSITION PARAMETERS. Surface Review and Letters, 2008, 15, 453-458.	1.1	3
15	Experimental and theoretical study of the electronic properties of CoSi2 and NiSi2. Applied Surface Science, 2004, 230, 386-392.	6.1	10
16	Electronic properties of Co and Ni silicides: a theoretical approach using extended Huckel method. Physica Status Solidi (B): Basic Research, 2004, 241, 2905-2913.	1.5	4
17	XPS and HRTEM characterization of cobalt–nickel silicide thin films. Applied Surface Science, 2000, 161, 61-73.	6.1	48
18	Study of thermal diffusion between Al2O3 and Al thin films. Applied Surface Science, 1999, 151, 139-147.	6.1	14