
Liwen Mu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4738085/publications.pdf Version: 2024-02-01

LIWEN MII

#	Article	IF	CITATIONS
1	Thermal transport in polymeric materials and across composite interfaces. Applied Materials Today, 2018, 12, 92-130.	2.3	299
2	Superamphiphobic and Electroactive Nanocomposite toward Self-Cleaning, Antiwear, and Anticorrosion Coatings. ACS Applied Materials & amp; Interfaces, 2016, 8, 12481-12493.	4.0	145
3	Cotton fabric derived hierarchically porous carbon and nitrogen doping for sustainable capacitor electrode. Carbon, 2017, 111, 839-848.	5.4	140
4	A biomimetic spherical cactus superhydrophobic coating with durable and multiple anti-corrosion effects. Chemical Engineering Journal, 2018, 338, 670-679.	6.6	98
5	Facile synthesis of mesoporous carbon nanocomposites from natural biomass for efficient dye adsorption and selective heavy metal removal. RSC Advances, 2016, 6, 2259-2269.	1.7	74
6	Non-corrosive green lubricants: strengthened lignin–[choline][amino acid] ionic liquids interaction via reciprocal hydrogen bonding. RSC Advances, 2015, 5, 66067-66072.	1.7	68
7	In-situ reduction of Ag nanoparticles on oxygenated mesoporous carbon fabric: Exceptional catalyst for nitroaromatics reduction. Applied Catalysis B: Environmental, 2016, 182, 306-315.	10.8	68
8	Holistically Engineered Polymer–Polymer and Polymer–Ion Interactions in Biocompatible Polyvinyl Alcohol Blends for Highâ€Performance Triboelectric Devices in Selfâ€Powered Wearable Cardiovascular Monitorings. Advanced Materials, 2020, 32, e2002878.	11.1	66
9	The tribological behavior of nanometer and micrometer TiO2 particle-filled polytetrafluoroethylene/polyimide. Materials & Design, 2011, 32, 964-970.	5.1	62
10	The stiffness–thermal conduction relationship at the composite interface: the effect of particle alignment on the long-range confinement of polymer chains monitored by scanning thermal microscopy. Nanoscale, 2018, 10, 1695-1703.	2.8	56
11	Green processing of plant biomass into mesoporous carbon as catalyst support. Chemical Engineering Journal, 2016, 295, 301-308.	6.6	55
12	Lignin in Ethylene Glycol and Poly(ethylene glycol): Fortified Lubricants with Internal Hydrogen Bonding. ACS Sustainable Chemistry and Engineering, 2016, 4, 1840-1849.	3.2	54
13	The effect of thermal conductivity and friction coefficient on the contact temperature of polyimide composites: Experimental and finite element simulation. Tribology International, 2012, 53, 45-52.	3.0	53
14	Molecular Origin of Efficient Phonon Transfer in Modulated Polymer Blends: Effect of Hydrogen Bonding on Polymer Coil Size and Assembled Microstructure. Journal of Physical Chemistry C, 2017, 121, 14204-14212.	1.5	53
15	Structurally tuning microwave absorption of core/shell structured CNT/polyaniline catalysts for energy efficient saccharide-HMF conversion. Applied Catalysis B: Environmental, 2018, 220, 581-588.	10.8	50
16	Developing heat conduction pathways through short polymer chains in a hydrogen bonded polymer system. Composites Science and Technology, 2017, 148, 97-105.	3.8	49
17	Expedited Phonon Transfer in Interfacially Constrained Polymer Chain along Self-Organized Amino Acid Crystals. ACS Applied Materials & Interfaces, 2017, 9, 12138-12145.	4.0	49
18	Sorption mechanism of organic dyes on a novel self-nitrogen-doped porous graphite biochar: Coupling DFT calculations with experiments. Chemical Engineering Science, 2021, 242, 116739.	1.9	47

#	Article	IF	CITATIONS
19	Superamphiphobicity and electroactivity enabled dual physical/chemical protections in novel anticorrosive nanocomposite coatings. Polymer, 2016, 85, 37-46.	1.8	46
20	lonic Grease Lubricants: Protic [Triethanolamine][Oleic Acid] and Aprotic [Choline][Oleic Acid]. ACS Applied Materials & Interfaces, 2016, 8, 4977-4984.	4.0	45
21	Machine learning prediction of bio-oil characteristics quantitatively relating to biomass compositions and pyrolysis conditions. Fuel, 2022, 312, 122812.	3.4	45
22	Moisture driven thermal conduction in polymer and polymer blends. Composites Science and Technology, 2017, 151, 115-123.	3.8	44
23	TiO2 nanofibers heterogeneously wrapped with reduced graphene oxide as efficient Pt electrocatalyst supports for methanol oxidation. International Journal of Hydrogen Energy, 2015, 40, 3679-3688.	3.8	42
24	Comparative Study of Tribological Properties of Different Fibers Reinforced PTFE/PEEK Composites at Elevated Temperatures. Tribology Transactions, 2010, 53, 189-194.	1.1	41
25	Techno-economic analysis of biomass processing with dual outputs of energy and activated carbon. Bioresource Technology, 2021, 319, 124108.	4.8	41
26	Excellent performance of Pt-C/TiO 2 for methanol oxidation: Contribution of mesopores and partially coated carbon. Applied Surface Science, 2017, 426, 890-896.	3.1	38
27	Lignin from Hardwood and Softwood Biomass as a Lubricating Additive to Ethylene Glycol. Molecules, 2018, 23, 537.	1.7	37
28	[N-Methyl-2-pyrrolidone][C1–C4 carboxylic acid]: a novel solvent system with exceptional lignin solubility. Chemical Communications, 2015, 51, 13554-13557.	2.2	36
29	Enriching Heteroelements in Lignin as Lubricating Additives for Bioionic Liquids. ACS Sustainable Chemistry and Engineering, 2016, 4, 3877-3887.	3.2	36
30	Paving the Thermal Highway with Self-Organized Nanocrystals in Transparent Polymer Composites. ACS Applied Materials & Interfaces, 2016, 8, 29080-29087.	4.0	35
31	Enhancing Energy Efficiency in Saccharide–HMF Conversion with Core/shell Structured Microwave Responsive Catalysts. ACS Sustainable Chemistry and Engineering, 2017, 5, 4352-4358.	3.2	32
32	Pore size dependent molecular adsorption of cationic dye in biomass derived hierarchically porous carbon. Journal of Environmental Management, 2017, 196, 168-177.	3.8	29
33	Synthesis of hollow fullerene-like molybdenum disulfide/reduced graphene oxide nanocomposites with excellent lubricating properties. Carbon, 2018, 134, 423-430.	5.4	29
34	Superhydrophobic polyaniline hollow spheres with mesoporous brain-like convex-fold shell textures. Journal of Materials Chemistry A, 2015, 3, 19299-19303.	5.2	28
35	Carbon nanofiber reinforced Co-continuous HDPE/PMMA composites: Exploring the role of viscosity ratio on filler distribution and electrical/thermal properties. Composites Science and Technology, 2019, 184, 107859.	3.8	28
36	Two important factors of selecting lignin as efficient lubricating additives in poly (ethylene glycol): Hydrogen bond and molecular weight. International Journal of Biological Macromolecules, 2019, 129, 564-570.	3.6	28

#	Article	IF	CITATIONS
37	Friction and Wear Behavior of CF/PTFE Composites Lubricated by Choline Chloride Ionic Liquids. Tribology Letters, 2013, 49, 413-420.	1.2	25
38	Organosilane grafted silica: Quantitative correlation of microscopic surface characters and macroscopic surface properties. Applied Surface Science, 2017, 399, 565-572.	3.1	25
39	Tribological behavior of carbon nanotube and polytetrafluoroethylene filled polyimide composites under different lubricated conditions. Journal of Applied Polymer Science, 2011, 121, 1574-1578.	1.3	24
40	Tribological properties of polyimide coating filled with carbon nanotube at elevated temperatures. Polymer Composites, 2020, 41, 2652-2661.	2.3	24
41	Tribological properties of polyimide-graphene composite coatings at elevated temperatures. Progress in Organic Coatings, 2020, 142, 105602.	1.9	24
42	Durable Selfâ€Healing Superhydrophobic Coating with Biomimic "Chloroplast―Analogous Structure. Advanced Materials Interfaces, 2016, 3, 1600040.	1.9	23
43	Engineering Hydrogen Bonding Interaction and Charge Separation in Bio-Polymers for Green Lubrication. Journal of Physical Chemistry B, 2017, 121, 5669-5678.	1.2	23
44	Self-Lubricating Polytetrafluoroethylene/Polyimide Blends Reinforced with Zinc Oxide Nanoparticles. Journal of Nanomaterials, 2015, 2015, 1-8.	1.5	22
45	Turning the solubility and lubricity of ionic liquids by absorbing CO 2. Tribology International, 2018, 121, 223-230.	3.0	22
46	Polyelectrolyte cellulose gel with PEG/water: Toward fully green lubricating grease. Carbohydrate Polymers, 2020, 230, 115670.	5.1	22
47	Unveiling Mesopore Evolution in Carbonized Wood: Interfacial Separation, Migration, and Degradation of Lignin Phase. ACS Sustainable Chemistry and Engineering, 2015, 3, 2489-2495.	3.2	21
48	Localizing microwave heat by surface polarization of titanate nanostructures for enhanced catalytic reaction efficiency. Applied Catalysis B: Environmental, 2018, 227, 266-275.	10.8	21
49	Influences of geometrical topography and surface chemistry on the stable immobilization of adenosine deaminase on mesoporous TiO 2. Chemical Engineering Science, 2016, 139, 142-151.	1.9	19
50	Grafting heteroelement-rich groups on graphene oxide: Tuning polarity and molecular interaction with bio-ionic liquid for enhanced lubrication. Journal of Colloid and Interface Science, 2017, 498, 47-54.	5.0	19
51	Stable Dispersed Zeolitic Imidazolate Framework/Graphene Oxide Nanocomposites in Ionic Liquids Resulting in High Lubricating Performance. Advanced Materials Interfaces, 2020, 7, 1902194.	1.9	18
52	A negative-carbon footprint process with mixed biomass feedstock maximizes conversion efficiency, product value and CO2 mitigation. Bioresource Technology, 2022, 351, 127004.	4.8	18
53	Elastohydrodynamic Performance of a Bio-Based, Non-Corrosive Ionic Liquid. Applied Sciences (Switzerland), 2017, 7, 996.	1.3	17
54	Novel Biorefinery Approach Aimed at Vegetarians Reduces the Dependency on Marine Fish Stocks for Obtaining Squalene and Docosahexaenoic Acid. ACS Sustainable Chemistry and Engineering, 2020, 8, 8803-8813.	3.2	17

#	Article	IF	CITATIONS
55	High load capacity with ionic liquid-lubricated tribological system. Tribology International, 2016, 94, 315-322.	3.0	16
56	Interface‣trengthened Polyimide/Carbon Nanofibers Nanocomposites with Superior Mechanical and Tribological Properties. Macromolecular Chemistry and Physics, 2014, 215, 1407-1414.	1.1	15
57	Tribological behaviors of carbon series additions reinforced <scp>CF/PTFE</scp> composites at high speed. Journal of Applied Polymer Science, 2016, 133, .	1.3	15
58	Boosting Energy Efficiency of Nickel Cobaltite via Interfacial Engineering in Hierarchical Supercapacitor Electrode. Journal of Physical Chemistry C, 2016, 120, 23377-23388.	1.5	14
59	Versatile Ionic Gel Driven by Dual Hydrogen Bond Networks: Toward Advanced Lubrication and Self-Healing. ACS Applied Polymer Materials, 2021, 3, 5932-5941.	2.0	14
60	CO2-negative biomass conversion: An economic route with co-production of green hydrogen and highly porous carbon. Applied Energy, 2022, 311, 118685.	5.1	14
61	Concanavalin A induced orientation immobilization of Nuclease P 1 : The effect of lectin agglutination. Process Biochemistry, 2018, 64, 160-169.	1.8	13
62	Advanced Materialâ€Oriented Biomass Precise Reconstruction: A Review on Porous Carbon with Inherited Natural Structure and Created Artificial Structure by Postâ€Treatment. Macromolecular Bioscience, 2022, 22, e2100479.	2.1	13
63	Effect of the Composition of Biomass on the Quality of Syngas Produced from Thermochemical Conversion Based on Thermochemical Data Prediction. Energy & Fuels, 2019, 33, 5253-5262.	2.5	12
64	Structural strategies to design bio-ionic liquid: Tuning molecular interaction with lignin for enhanced lubrication. Journal of Molecular Liquids, 2019, 280, 49-57.	2.3	12
65	A study of tribological and mechanical properties of PTFE composites filled with surface treated K ₂ Ti ₆ O ₁₃ whisker. Journal of Applied Polymer Science, 2012, 124, 1456-1463.	1.3	11
66	Durable polytetrafluoroethylene composites in harsh environments: Tribology and corrosion investigation. Journal of Applied Polymer Science, 2012, 124, 4307-4314.	1.3	9
67	Tuning nitrogen species on natural biomass derived porous carbon for efficient acetone adsorption. Materials Chemistry and Physics, 2020, 253, 123338.	2.0	9
68	Friction and Wear Behaviors of Solid Lubricants/Polyimide Composites in Liquid Mediums. Materials Science Forum, 2010, 654-656, 2763-2766.	0.3	8
69	Heterogeneous nucleation/growth of silver nanoparticles onto oxygenated mesoporous carbon: Alcohol effect and catalytic property. Catalysis Communications, 2016, 77, 65-69.	1.6	8
70	Single-Cell Oils from Oleaginous Microorganisms as Green Bio-Lubricants: Studies on Their Tribological Performance. Energies, 2021, 14, 6685.	1.6	8
71	A facile and green strategy to synthesize N/P co-doped bio-char as VOCs adsorbent: Through efficient biogas slurry treatment and struvite transform. Fuel, 2022, 322, 124156.	3.4	8
72	Confined molecular motion across liquid/liquid interfaces in a triphasic reaction towards free-standing conductive polymer tube arrays. Journal of Materials Chemistry A, 2016, 4, 6290-6294.	5.2	7

#	Article	IF	CITATIONS
73	Carbon coated Li4Ti5O12 fibers: Relying on the lithium diffusivity in TiO2–B crystal structure for high rate lithium battery. Journal of Alloys and Compounds, 2017, 721, 545-553.	2.8	7
74	Thermal Conduction in Polymer Composites. , 2019, , 77-110.		7
75	Critical Role of Carbonized Cellulose in the Evolution of Highly Porous Biocarbon: Seeing the Structural and Compositional Changes of Spent Mushroom Substrate by Deconvoluted Thermogravimetric Analysis. Industrial & Engineering Chemistry Research, 2020, 59, 22541-22548.	1.8	7
76	Hollow IF-MoS2/r-GO Nanocomposite Filled Polyimide Coating with Improved Mechanical, Thermal and Tribological Properties. Coatings, 2021, 11, 25.	1.2	7
77	Synthesis of biogas-residue-based mesoporous carbons via one-step template-free method for organic and inorganic pollutants removal. Fuel, 2022, 311, 122516.	3.4	6
78	Poly(alkylimidazolium bis(trifluoromethylsulfonyl)imide)â€Based Polymerized Ionic Liquids: A Potential Highâ€Performance Lubricating Grease. Advanced Materials Interfaces, 2019, 6, 1801796.	1.9	5
79	Surfactant assisted and in situ formed micro liquid metal as excellent lubricant additive in polyimide coating. Tribology International, 2021, 159, 106953.	3.0	5
80	Valorization of industrial lignin as lubricating additives by C–C Bond Cleavage and doping heteroelement-rich groups. Biomass and Bioenergy, 2022, 161, 106470.	2.9	5
81	Fat mimicking compounds as grease thickeners in Poly(ethylene glycol)/water: Adopting the solution from history. Journal of Colloid and Interface Science, 2020, 578, 619-628.	5.0	4
82	Cycling pressure-switching process enriches micropores in activated carbon by accelerating reactive gas internal diffusion in porous channels. Sustainable Materials and Technologies, 2021, 28, e00248.	1.7	2
83	Naturally dispersed ash components in bio-carbon composites: integrated ammonia nitrogen removal and specific surface area augment. Biomass Conversion and Biorefinery, 0, , 1.	2.9	1
84	Biomass-derived mesoporous and super-hydrophilic carbon manufactured by cycling-pressure-switching air activation process towards ultrahigh adsorption efficiency of tetracycline. Sustainable Materials and Technologies, 2022, , e00430.	1.7	1
85	Molecular Transformation, Diffusion, and Assembling into Three-Dimensional Freestanding Tube Arrays via a Triphasic Reaction. Langmuir, 2016, 32, 11525-11531.	1.6	0