
Guang-Jie Xia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4737855/publications.pdf Version: 2024-02-01

CUANC-LE XIA

#	Article	IF	CITATIONS
1	Enantioselective photoinduced cyclodimerization of a prochiral anthracene derivative adsorbed on helical metal nanostructures. Nature Chemistry, 2020, 12, 551-559.	13.6	90
2	Direct transformation of lignin into fluorescence-switchable graphene quantum dots and their application in ultrasensitive profiling of a physiological oxidant. Green Chemistry, 2019, 21, 3343-3352.	9.0	87
3	Controlling the self-assembly pathways of amphiphilic block copolymers into vesicles. Soft Matter, 2012, 8, 7865.	2.7	56
4	Pseudo-adsorption and long-range redox coupling during oxygen reduction reaction on single atom electrocatalyst. Nature Communications, 2022, 13, 1734.	12.8	56
5	Family of Highly Luminescent Pure Ionic Copper(I) Bromide Based Hybrid Materials. ACS Applied Materials & Interfaces, 2019, 11, 17513-17520.	8.0	54
6	Mechanistic Insight into the Oxygen Reduction Reaction on the Mn–N ₄ /C Single-Atom Catalyst: The Role of the Solvent Environment. Journal of Physical Chemistry C, 2020, 124, 7287-7294.	3.1	51
7	Facile Assembly of Chiral Metallosquares by Using Enantiopure Tribenzotriquinacene Corner Motifs. Chemistry - A European Journal, 2015, 21, 12011-12017.	3.3	33
8	Heterogeneous Two-Atom Single-Cluster Catalysts for the Nitrogen Electroreduction Reaction. Journal of Physical Chemistry C, 2021, 125, 19821-19830.	3.1	27
9	Lattice oxygen self-spillover on reducible oxide supported metal cluster: the water–gas shift reaction on Cu/CeO ₂ catalyst. Chemical Science, 2021, 12, 8260-8267.	7.4	21
10	Mechanistic insight into the catalytically active phase of CO2 hydrogenation on Cu/ZnO catalyst. Applied Surface Science, 2020, 525, 146481.	6.1	20
11	Gas-assisted transformation of gold from fcc to the metastable 4H phase. Nature Communications, 2020, 11, 552.	12.8	17
12	Diffusion and Surface Segregation of Interstitial Ti Defects Induced by Electronic Metal–Support Interactions on a Au/TiO ₂ Nanocatalyst. ACS Catalysis, 2022, 12, 4455-4464.	11.2	17
13	Using general computational chemistry strategy to unravel the reactivity of emerging pollutants: An example of sulfonamide chlorination. Water Research, 2021, 202, 117391.	11.3	13
14	Atomic origin of CO-Interaction effect of PtPb@Pt catalyst revealed by in situ environmental transmission electron microscopy. Nano Energy, 2020, 76, 105099.	16.0	11
15	Solvent Promotion on the Metal-Support Interaction and Activity of Pd@ZrO2 Catalyst: Formation of Metal Hydrides as the New Catalytic Active Phase at the Solid-Liquid Interface. Journal of Catalysis, 2021, , .	6.2	10
16	Unraveling the catalytically active phase of carbon dioxide hydrogenation to methanol on Zn/Cu alloy: Single atom versus small cluster. Journal of Energy Chemistry, 2021, 61, 582-593.	12.9	9
17	Fast Transformation of CO ₂ into CO Via a Hydrogen Bond Network on the Cu Electrocatalysts. Journal of Physical Chemistry C, 2022, 126, 7841-7848.	3.1	8
18	A comparative study on the CO2 hydrogenation catalyzed by Ru dihydride complexes: (PMe3)4RuH2 and (Me2PCH2CH2PMe2)2RuH2. Dalton Transactions, 2016, 45, 17329-17342.	3.3	6

GUANG-JIE XIA

#	Article	IF	CITATIONS
19	Single-element amorphous palladium nanoparticles formed via phase separation. Nano Research, 2022, 15, 5575-5580.	10.4	5
20	Carbon Monoxide Gas Induced 4H-to- <i>fcc</i> Phase Transformation of Gold As Revealed by <i>In-Situ</i> Transmission Electron Microscopy. Inorganic Chemistry, 2020, 59, 14415-14423.	4.0	4
21	Boosting the performance by the water solvation shell with hydrogen bonds on protonic ionic liquids: insights into the acid catalysis of the glycosidic bond. Catalysis Science and Technology, 2021, 11, 3527-3538.	4.1	4
22	Structural inhomogeneity as a factor promoting the homogenous catalysis of CO2 hydrogenation by (PMe3)4RuH2. Physical Chemistry Chemical Physics, 2019, 21, 19252-19268.	2.8	2