Jorge R Wagner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4737722/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effects of Thermal Treatment of Soy Protein Isolate on the Characteristics and Structure-Function Relationship of Soluble and Insoluble Fractions. Journal of Agricultural and Food Chemistry, 1995, 43, 2471-2479.	2.4	218
2	Effect of calcium salts and surfactant concentration on the stability of water-in-oil (w/o) emulsions prepared with polyglycerol polyricinoleate. Journal of Colloid and Interface Science, 2010, 341, 101-108.	5.0	184
3	Liposomes as vehicles for vitamins E and C: An alternative to fortify orange juice and offer vitamin C protection after heat treatment. Food Research International, 2011, 44, 3039-3046.	2.9	167
4	Relation between Solubility and Surface Hydrophobicity as an Indicator of Modifications during Preparation Processes of Commercial and Laboratory-Prepared Soy Protein Isolates. Journal of Agricultural and Food Chemistry, 2000, 48, 3159-3165.	2.4	149
5	Hydrolysates of native and modified soy protein isolates: structural characteristics, solubility and foaming properties. Food Research International, 2002, 35, 511-518.	2.9	138
6	Electrophoretic, solubility and functional properties of commercial soy protein isolates. Journal of Agricultural and Food Chemistry, 1991, 39, 1029-1032.	2.4	122
7	Surface Functional Properties of Native, Acid-Treated, and Reduced Soy Glycinin. 2. Emulsifying Properties. Journal of Agricultural and Food Chemistry, 1999, 47, 2181-2187.	2.4	113
8	Effects of Dissociation, Deamidation, and Reducing Treatment on Structural and Surface Active Properties of Soy Glycinin. Journal of Agricultural and Food Chemistry, 1995, 43, 1993-2000.	2.4	95
9	Freeze-thaw stability of oil-in-water emulsions prepared with native and thermally-denatured soybean isolates. Food Hydrocolloids, 2011, 25, 398-409.	5.6	91
10	Coalescence of o/w emulsions stabilized by whey and isolate soybean proteins. Influence of thermal denaturation, salt addition and competitive interfacial adsorption. Food Research International, 2002, 35, 547-557.	2.9	84
11	Surface Functional Properties of Native, Acid-Treated, and Reduced Soy Glycinin. 1. Foaming Properties. Journal of Agricultural and Food Chemistry, 1999, 47, 2173-2180.	2.4	78
12	Comparative study of foaming properties of whey and isolate soybean proteins. Food Research International, 2002, 35, 721-729.	2.9	78
13	Physicochemical characterization and stability of chia oil microencapsulated with sodium caseinate and lactose by spray-drying. Powder Technology, 2015, 271, 26-34.	2.1	75
14	Emulsifying properties and surface behavior of native and denatured whey soy proteins in comparison with other proteins. Creaming stability of oil-in-water emulsions. JAOCS, Journal of the American Oil Chemists' Society, 2004, 81, 625-632.	0.8	71
15	Thermal and Electrophoretic Behavior, Hydrophobicity, and Some Functional Properties of Acid-Treated Soy Isolates. Journal of Agricultural and Food Chemistry, 1996, 44, 1881-1889.	2.4	70
16	COMPARATIVE STUDY OF STRUCTURAL CHARACTERISTICS AND THERMAL BEHAVIOR OF WHEY AND ISOLATE SOYBEAN PROTEINS. Journal of Food Biochemistry, 1999, 23, 489-507.	1.2	70
17	Nanoparticles assembled from mixtures of whey protein isolate and soluble soybean polysaccharides. Structure, interfacial behavior and application on emulsions subjected to freeze-thawing. Food Hydrocolloids, 2019, 95, 445-453.	5.6	55
18	Water in oil (w/o) and double (w/o/w) emulsions prepared with spans: microstructure, stability, and rheology. Colloid and Polymer Science, 2007, 285, 1119-1128.	1.0	52

Jorge R Wagner

#	Article	IF	CITATIONS
19	Thermal Denaturation of Hake (Merluccius hubbsi) Myofibrillar Proteins. A Differential Scanning Calorimetric and Electrophoretic Study. Journal of Food Science, 1990, 55, 683-687.	1.5	48
20	RHEOLOGY OF DOUBLE (W/O/W) EMULSIONS PREPARED WITH SOYBEAN MILK AND FORTIFIED WITH CALCIUM. Journal of Texture Studies, 2010, 41, 651-671.	1.1	45
21	Chia seed oil-in-water emulsions as potential delivery systems of ï‰-3 fatty acids. Journal of Food Engineering, 2015, 162, 48-55.	2.7	43
22	Effect of physical and chemical factors on rheological behavior of commercial soy protein isolates: protein concentration, water imbibing capacity, salt addition, and thermal treatment. Journal of Agricultural and Food Chemistry, 1992, 40, 1930-1937.	2.4	38
23	Relationships between Different Hydration Properties of Commercial and Laboratory Soybean Isolates. Journal of Agricultural and Food Chemistry, 2001, 49, 4852-4858.	2.4	38
24	Bioactive compounds as functional food ingredients: characterization in model system and sensory evaluation in chocolate milk. Journal of Food Engineering, 2015, 166, 55-63.	2.7	38
25	The effects of divalent cations in the presence of phosphate, citrate and chloride on the aggregation of soy protein isolate. Food Research International, 1999, 32, 135-143.	2.9	36
26	Indigenous filamentous fungi on the surface of Argentinean dry fermented sausages produced in Colonia Caroya (Córdoba). International Journal of Food Microbiology, 2013, 164, 81-86.	2.1	36
27	Solid Fat Content Estimation by Differential Scanning Calorimetry: Prior Treatment and Proposed Correction. JAOCS, Journal of the American Oil Chemists' Society, 2013, 90, 467-473.	0.8	35
28	Hydration and water vapour transport properties in yeast biomass based films: A study of plasticizer content and thickness effects. European Polymer Journal, 2018, 99, 9-17.	2.6	34
29	Thermal Behavior of Soy Protein Fractions Depending on Their Preparation Methods, Individual Interactions, and Storage Conditions. Journal of Agricultural and Food Chemistry, 2010, 58, 10092-10100.	2.4	30
30	β-Glucan, a Promising Polysaccharide for Bio-based Films Developments for Food Contact Materials and Medical Applications. Current Organic Chemistry, 2018, 22, 1249-1254.	0.9	27
31	Water imbibing capacity of soy protein isolates: influence of protein denaturation. Journal of Agricultural and Food Chemistry, 1991, 39, 1386-1391.	2.4	26
32	Thermal Denaturation in Fish Muscle Proteins During Gelling: Effect of Spawning Condition. Journal of Food Science, 1991, 56, 281-284.	1.5	24
33	Development of innovative biodegradable films based on biomass of Saccharomyces cerevisiae. Innovative Food Science and Emerging Technologies, 2016, 36, 83-91.	2.7	21
34	Extraction and characterization of soy hull polysaccharide-protein fractions. Analysis of aggregation and surface rheology. Food Hydrocolloids, 2018, 79, 40-47.	5.6	21
35	Rheological properties and stability of low-in-fat dressings prepared with high-pressure homogenized yeast. Journal of Food Engineering, 2012, 111, 57-65.	2.7	17
36	Characterization of thermal, mechanical and hydration properties of novel films based on Saccharomyces cerevisiae biomass. Innovative Food Science and Emerging Technologies, 2018, 48, 240-247.	2.7	17

Jorge R Wagner

#	Article	IF	CITATIONS
37	Comparative study of emulsifying properties in acidic condition of soluble polysaccharides fractions obtained from soy hull and defatted soy flour. Journal of Food Science and Technology, 2016, 53, 956-967.	1.4	16
38	Heat treatments of defatted soy flour: Impact on protein structure, aggregation, and cold-set gelation properties. Food Structure, 2019, 22, 100130.	2.3	14
39	Effect of Xanthan Gum on the Rheological Behavior and Microstructure of Sodium Caseinate Acid Gels. Gels, 2016, 2, 23.	2.1	13
40	Effect of salt content and type on emulsifying properties of hull soy soluble polysaccharides at acidic pH. Food Research International, 2017, 97, 62-70.	2.9	13
41	Thermal behavior and hydration properties of yeast proteins from Saccharomyces cerevisiae and Kluyveromyces fragilis. Food Chemistry, 2000, 69, 161-165.	4.2	12
42	Emulsifying properties of defatted rice bran concentrates enriched in fiber and proteins. Journal of the Science of Food and Agriculture, 2020, 100, 1336-1343.	1.7	11
43	Impact of Sample Aging on Freeze-Thaw Stability of Oil-in-Water Emulsions Prepared with Soy Protein Isolates. International Journal of Food Properties, 2016, 19, 2322-2337.	1.3	10
44	Acid-Induced Aggregation and Gelation of Sodium Caseinate-Guar Gum Mixtures. Food Biophysics, 2015, 10, 181-194.	1.4	9
45	Effect of Water Content on Thermal Behavior of Freeze-Dried Soy Whey and Their Isolated Proteins. Journal of Agricultural and Food Chemistry, 2011, 59, 3950-3956.	2.4	8
46	Rheology of Cream-like Emulsions Prepared with Soybean Milk and Low Trans Vegetable Fat. JAOCS, Journal of the American Oil Chemists' Society, 2012, 89, 1857-1865.	0.8	8
47	Partial coalescence in double (W1 /O/W2) emulsions prepared with skimmed milk, polyglycerol polyricinoleate, and different fats. European Journal of Lipid Science and Technology, 2017, 119, 1600447.	1.0	8
48	Effects of Calcium Content and Homogenization Method on the Microstructure, Rheology, and Stability of Emulsions Prepared with Soybean Flour Dispersions. European Journal of Lipid Science and Technology, 2018, 120, 1700500.	1.0	8
49	Influence of chemical composition and structural properties on the surface behavior and foam properties of tofu-whey concentrates in acid medium. Food Research International, 2020, 128, 108772.	2.9	8
50	Soybean Hull Insoluble Polysaccharides: Improvements of Its Physicochemical Properties Through High Pressure Homogenization. Food Biophysics, 2020, 15, 173-187.	1.4	8
51	Influence of Different Factors on the Particle Size Distribution and Solid Fat Content of Waterâ€inâ€Oil Emulsions. JAOCS, Journal of the American Oil Chemists' Society, 2016, 93, 793-801.	0.8	6
52	Effect of Calcium on Ovine Caseinate Functional Properties. Journal of Chemical & Engineering Data, 2010, 55, 4624-4631.	1.0	5
53	Partial Coalescence in Cream‣ike Emulsions Prepared with Alternative Fats: Effect of Controlled Stirring and Temperature Cycles. Journal of Texture Studies, 2014, 45, 396-407.	1.1	5
54	Glycosylation, denaturation, and aggregation of soy proteins in defatted soy flakes flour: Influence of thermal and homogenization treatments. International Journal of Food Properties, 2017, 20, 2358-2372.	1.3	5

JORGE R WAGNER

#	Article	IF	CITATIONS
55	Margarineâ€Like Emulsions Prepared with Coconut and Palm Oils: Analysis of Microstructure and Freeze–Thaw Stability by Differential Scanning Calorimetry. JAOCS, Journal of the American Oil Chemists' Society, 2020, 97, 1071-1081.	0.8	5
56	Microbiological and Sensory Characteristics of Mould-Ripened Salami under Different Packaging Conditions. Food Technology and Biotechnology, 2019, 57, 87-96.	0.9	5
57	Impact of the filmâ€forming dispersion pH on the properties of yeast biomass films. Journal of the Science of Food and Agriculture, 2021, 101, 5636-5644.	1.7	4
58	Impact of environmental stresses on the stability of acidic oil-in-water emulsions prepared with tofu whey concentrates. Current Research in Food Science, 2022, 5, 498-505.	2.7	4
59	Analysis of Freeze-Thaw Behavior of Double (W1/O/W2) Emulsions by Differential Scanning Calorimetry: Effects of Inner Salt Concentration and Solid Fat Content. Food Biophysics, 2021, 16, 98-108.	1.4	3