Yongpan Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4737694/publications.pdf

Version: 2024-02-01

		361296	254106
121	3,309	20	43
papers	citations	h-index	g-index
101	101	101	2206
121	121	121	2286
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	PRIME. Computer Architecture News, 2016, 44, 27-39.	2.5	823
2	PRIME: A Novel Processing-in-Memory Architecture for Neural Network Computation in ReRAM-Based Main Memory. , 2016 , , .		238
3	Architecture exploration for ambient energy harvesting nonvolatile processors. , 2015, , .		174
4	Accurate Temperature-Dependent Integrated Circuit Leakage Power Estimation is Easy. , 2007, , .		135
5	A 3us wake-up time nonvolatile processor based on ferroelectric flip-flops. , 2012, , .		129
6	Thermal vs Energy Optimization for DVFS-Enabled Processors in Embedded Systems. , 2007, , .		94
7	Storage-Less and Converter-Less Photovoltaic Energy Harvesting With Maximum Power Point Tracking for Internet of Things. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2016, 35, 173-186.	1.9	87
8	Sticker: A 0.41 - 62.1 TOPS/W 8Bit Neural Network Processor with Multi-Sparsity Compatible Convolution Arrays and Online Tuning Acceleration for Fully Connected Layers. , 2018 , , .		86
9	GraphH: A Processing-in-Memory Architecture for Large-Scale Graph Processing. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2019, 38, 640-653.	1.9	7 5
10	Fixing the broken time machine. , 2015, , .		64
10	Fixing the broken time machine. , 2015, , . Nonvolatile Processor Architecture Exploration for Energy-Harvesting Applications. IEEE Micro, 2015, 35, 32-40.	1.8	58
	Nonvolatile Processor Architecture Exploration for Energy-Harvesting Applications. IEEE Micro, 2015,	1.8	
11	Nonvolatile Processor Architecture Exploration for Energy-Harvesting Applications. IEEE Micro, 2015, 35, 32-40. STICKER: An Energy-Efficient Multi-Sparsity Compatible Accelerator for Convolutional Neural		58
11 12	Nonvolatile Processor Architecture Exploration for Energy-Harvesting Applications. IEEE Micro, 2015, 35, 32-40. STICKER: An Energy-Efficient Multi-Sparsity Compatible Accelerator for Convolutional Neural Networks in 65-nm CMOS. IEEE Journal of Solid-State Circuits, 2020, 55, 465-477. Storage-less and converter-less maximum power point tracking of photovoltaic cells for a		58 51
11 12 13	Nonvolatile Processor Architecture Exploration for Energy-Harvesting Applications. IEEE Micro, 2015, 35, 32-40. STICKER: An Energy-Efficient Multi-Sparsity Compatible Accelerator for Convolutional Neural Networks in 65-nm CMOS. IEEE Journal of Solid-State Circuits, 2020, 55, 465-477. Storage-less and converter-less maximum power point tracking of photovoltaic cells for a nonvolatile microprocessor., 2014, , . Advancing Nonvolatile Computing With Nonvolatile NCFET Latches and Flip-Flops. IEEE Transactions	3.5	58 51 49
11 12 13	Nonvolatile Processor Architecture Exploration for Energy-Harvesting Applications. IEEE Micro, 2015, 35, 32-40. STICKER: An Energy-Efficient Multi-Sparsity Compatible Accelerator for Convolutional Neural Networks in 65-nm CMOS. IEEE Journal of Solid-State Circuits, 2020, 55, 465-477. Storage-less and converter-less maximum power point tracking of photovoltaic cells for a nonvolatile microprocessor., 2014,,. Advancing Nonvolatile Computing With Nonvolatile NCFET Latches and Flip-Flops. IEEE Transactions on Circuits and Systems I: Regular Papers, 2017, 64, 2907-2919. Design of Nonvolatile SRAM with Ferroelectric FETs for Energy-Efficient Backup and Restore. IEEE	3.5	58 51 49 49
11 12 13 14	Nonvolatile Processor Architecture Exploration for Energy-Harvesting Applications. IEEE Micro, 2015, 35, 32-40. STICKER: An Energy-Efficient Multi-Sparsity Compatible Accelerator for Convolutional Neural Networks in 65-nm CMOS. IEEE Journal of Solid-State Circuits, 2020, 55, 465-477. Storage-less and converter-less maximum power point tracking of photovoltaic cells for a nonvolatile microprocessor., 2014, . Advancing Nonvolatile Computing With Nonvolatile NCFET Latches and Flip-Flops. IEEE Transactions on Circuits and Systems I: Regular Papers, 2017, 64, 2907-2919. Design of Nonvolatile SRAM with Ferroelectric FETs for Energy-Efficient Backup and Restore. IEEE Transactions on Electron Devices, 2017, 64, 3037-3040.	3.5	58 51 49 49

#	Article	IF	Citations
19	A ReRAM-Based Nonvolatile Flip-Flop With Self-Write-Termination Scheme for Frequent-OFF Fast-Wake-Up Nonvolatile Processors. IEEE Journal of Solid-State Circuits, 2017, 52, 2194-2207.	3.5	41
20	Incidental computing on IoT nonvolatile processors., 2017,,.		38
21	A compare-and-write ferroelectric nonvolatile flip-flop for energy-harvesting applications. , 2010, , .		35
22	A Ferroelectric Nonvolatile Processor with 46 \$mu \$ s System-Level Wake-up Time and 14 \$mu \$ s Sleep Time for Energy Harvesting Applications. IEEE Transactions on Circuits and Systems I: Regular Papers, 2017, 64, 596-607.	3.5	35
23	Universal Compact Model for Thin-Film Transistors and Circuit Simulation for Low-Cost Flexible Large Area Electronics. IEEE Transactions on Electron Devices, 2017, 64, 2030-2037.	1.6	31
24	Demystifying and Mitigating Code-Dependent Switching Distortions in Current-Steering DACs. IEEE Transactions on Circuits and Systems I: Regular Papers, 2019, 66, 68-81.	3.5	28
25	Solar Power Prediction Assisted Intra-task Scheduling for Nonvolatile Sensor Nodes. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2016, 35, 724-737.	1.9	26
26	Design of 2T/Cell and 3T/Cell Nonvolatile Memories with Emerging Ferroelectric FETs. IEEE Design and Test, 2019, 36, 39-45.	1.1	26
27	Compiler directed automatic stack trimming for efficient non-volatile processors. , 2015, , .		25
28	Efficient and Robust Nonvolatile Computing-In-Memory Based on Voltage Division in 2T2R RRAM With Input-Dependent Sensing Control. IEEE Transactions on Circuits and Systems II: Express Briefs, 2021, 68, 1640-1644.	2.2	25
29	Stack-Size Sensitive On-Chip Memory Backup for Self-Powered Nonvolatile Processors. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2017, 36, 1804-1816.	1.9	24
30	A General Framework for Hardware Trojan Detection in Digital Circuits by Statistical Learning Algorithms. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2017, 36, 1633-1646.	1.9	23
31	SPaC: A Segment-based Parallel Compression for Backup Acceleration in Nonvolatile Processors. , 2013, , .		22
32	Lowering Area Overheads for FeFET-Based Energy-Efficient Nonvolatile Flip-Flops. IEEE Transactions on Electron Devices, 2018, 65, 2670-2674.	1.6	21
33	A 3.77TOPS/W Convolutional Neural Network Processor With Priority-Driven Kernel Optimization. IEEE Transactions on Circuits and Systems II: Express Briefs, 2019, 66, 277-281.	2.2	21
34	Data Backup Optimization for Nonvolatile SRAM in Energy Harvesting Sensor Nodes. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2017, 36, 1660-1673.	1.9	20
35	An Energy Efficient Backup Scheme with Low Inrush Current for Nonvolatile SRAM in Energy Harvesting Sensor Nodes. , 2015, , .		19
36	Software Assisted Non-volatile Register Reduction for Energy Harvesting Based Cyber-Physical System. , 2015, , .		19

#	Article	IF	Citations
37	Spendthrift: Machine learning based resource and frequency scaling for ambient energy harvesting nonvolatile processors., 2017,,.		18
38	Dynamic Power and Energy Management for Energy Harvesting Nonvolatile Processor Systems. Transactions on Embedded Computing Systems, 2017, 16, 1-23.	2.1	18
39	An Ultracompact Switching-Voltage-Based Fully Reconfigurable RRAM PUF With Low Native Instability. IEEE Transactions on Electron Devices, 2020, 67, 3010-3013.	1.6	18
40	Enabling Lower-Power Charge-Domain Nonvolatile In-Memory Computing With Ferroelectric FETs. IEEE Transactions on Circuits and Systems II: Express Briefs, 2021, 68, 2262-2266.	2.2	18
41	STICKER-IM: A 65 nm Computing-in-Memory NN Processor Using Block-Wise Sparsity Optimization and Inter/Intra-Macro Data Reuse. IEEE Journal of Solid-State Circuits, 2022, 57, 2560-2573.	3.5	17
42	Dynamic machine learning based matching of nonvolatile processor microarchitecture to harvested energy profile., 2015,,.		16
43	Wear-Leveling Aware Page Management for Non-Volatile Main Memory on Embedded Systems. IEEE Transactions on Multi-Scale Computing Systems, 2016, 2, 129-142.	2.5	16
44	A Bidirectional Integrated Equalizer Based on the Sepic–Zeta Converter for Hybrid Energy Storage System. IEEE Transactions on Power Electronics, 2022, 37, 12659-12668.	5 . 4	16
45	A ReRAM-Based Computing-in-Memory Convolutional-Macro With Customized 2T2R Bit-Cell for AloT Chip IP Applications. IEEE Transactions on Circuits and Systems II: Express Briefs, 2020, 67, 1534-1538.	2.2	15
46	FeFET-based low-power bitwise logic-in-memory with direct write-back and data-adaptive dynamic sensing interface. , 2020, , .		14
47	Intra-task scheduling for storage-less and converter-less solar-powered nonvolatile sensor nodes. , 2014, , .		13
48	Design exploration of inrush current aware controller for nonvolatile processor., 2015,,.		13
49	A 130-nm Ferroelectric Nonvolatile System-on-Chip With Direct Peripheral Restore Architecture for Transient Computing System. IEEE Journal of Solid-State Circuits, 2019, 54, 885-895.	3. 5	13
50	Design methodology of variable latency adders with multistage function speculation. , 2010, , .		12
51	Maximum Energy Efficiency Tracking Circuits for Converter-Less Energy Harvesting Sensor Nodes. IEEE Transactions on Circuits and Systems II: Express Briefs, 2017, 64, 670-674.	2.2	12
52	A Novel General Compact Model Approach for 7-nm Technology Node Circuit Optimization From Device Perspective and Beyond. IEEE Journal of the Electron Devices Society, 2020, 8, 295-301.	1.2	12
53	StructADMM: Achieving Ultrahigh Efficiency in Structured Pruning for DNNs. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33, 2259-2273.	7.2	12
54	PATH: Performance-Aware Task Scheduling for Energy-Harvesting Nonvolatile Processors. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2018, 26, 1671-1684.	2.1	11

#	Article	IF	Citations
55	Dynamic Channel Modeling and OFDM System Analysis for Capacitive Coupling Body Channel Communication. IEEE Transactions on Biomedical Circuits and Systems, 2019, 13, 735-745.	2.7	11
56	A Sparse-Adaptive CNN Processor with Area/Performance balanced N-Way Set-Associate PE Arrays Assisted by a Collision-Aware Scheduler. , 2019, , .		11
57	Checkpointing-Aware Loop Tiling for Energy Harvesting Powered Nonvolatile Processors. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2019, 38, 15-28.	1.9	11
58	CORAL: Coarse-grained reconfigurable architecture for Convolutional Neural Networks. , 2017, , .		10
59	An Auto Loss Compensation System for Capacitive-Coupled Body Channel Communication. IEEE Transactions on Biomedical Circuits and Systems, 2019, 13, 756-765.	2.7	10
60	High PE Utilization CNN Accelerator with Channel Fusion Supporting Pattern-Compressed Sparse Neural Networks., 2020,,.		10
61	A precision adaptive average time synchronization protocol in wireless sensor networks., 2008,,.		9
62	Noise Margin Modeling for Zero-\$V_{ext {GS}}\$ Load TFT Circuits and Yield Estimation. IEEE Transactions on Electron Devices, 2016, 63, 684-690.	1.6	9
63	A 4-Mbps 41-pJ/bit On-off Keying Transceiver for Body-channel Communication with Enhanced Auto Loss Compensation Technique., 2019,,.		9
64	Lightweight Precision-Adaptive Time Synchronization in Wireless Sensor Networks. IEICE Transactions on Communications, 2010, E93-B, 2299-2308.	0.4	8
65	Multi-source energy harvesting management and optimization for non-volatile processors., 2015,,.		8
66	Multi-source in-door energy harvesting for non-volatile processors. , 2016, , .		8
67	A 65-nm ReRAM-Enabled Nonvolatile Processor With Time-Space Domain Adaption and Self-Write-Termination Achieving \$> 4imes \$ Faster Clock Frequency and \$> 6imes \$ Higher Restore Speed. IEEE Journal of Solid-State Circuits, 2017, 52, 2769-2785.	3 . 5	8
68	A 3T/Cell Practical Embedded Nonvolatile Memory Supporting Symmetric Read and Write Access Based on Ferroelectric FETs., 2019, , .		7
69	MaxTracker: Continuously Tracking the Maximum Computation Progress for Energy Harvesting ReRAM-based CNN Accelerators. Transactions on Embedded Computing Systems, 2021, 20, 1-23.	2.1	7
70	NVPsim: A simulator for architecture explorations of nonvolatile processors. , 2016, , .		6
71	DVFS-Based Long-Term Task Scheduling for Dual-Channel Solar-Powered Sensor Nodes. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2017, 25, 2981-2994.	2.1	6
72	A 2.2-GHz Configurable Direct Digital Frequency Synthesizer Based on LUT and Rotation. IEEE Transactions on Circuits and Systems I: Regular Papers, 2019, 66, 1970-1980.	3.5	6

#	Article	IF	CITATIONS
73	STICKER-T: An Energy-Efficient Neural Network Processor Using Block-Circulant Algorithm and Unified Frequency-Domain Acceleration. IEEE Journal of Solid-State Circuits, 2021, 56, 1936-1948.	3.5	6
74	High-Quality Single-Model Deep Video Compression with Frame-Conv3D and Multi-frame Differential Modulation. Lecture Notes in Computer Science, 2020, , 239-254.	1.0	6
75	Design Insights of Non-volatile Processors and Accelerators in Energy Harvesting Systems. , 2020, , .		6
76	An energy efficient fully integrated OOK transceiver SoC for wireless body area networks. , 2013, , .		5
77	Noise Margin, Delay, and Power Model for Pseudo-CMOS TFT Logic Circuits. IEEE Transactions on Electron Devices, 2017, 64, 2635-2642.	1.6	5
78	CP-FPGA: Energy-Efficient Nonvolatile FPGA With Offline/Online Checkpointing Optimization. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2017, 25, 2153-2163.	2.1	5
79	'The danger of sleeping', an exploration of security in non-volatile processors. , 2017, , .		5
80	Efficient energy management by exploiting retention state for self-powered nonvolatile processors. Journal of Systems Architecture, 2018, 87, 23-35.	2.5	5
81	AERIS., 2019,,.		5
82	Lifetime-Aware Battery Allocation for Wireless Sensor Network under Cost Constraints. IEICE Transactions on Communications, 2012, E95.B, 1651-1660.	0.4	5
83	Performance-centric register file design for GPUs using racetrack memory. , 2016, , .		4
84	Accuracy Optimization With the Framework of Non-Volatile Computing-In-Memory Systems. IEEE Transactions on Circuits and Systems I: Regular Papers, 2022, 69, 518-529.	3.5	4
85	PACA: A Pattern Pruning Algorithm and Channel-Fused High PE Utilization Accelerator for CNNs. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2022, 41, 5043-5056.	1.9	4
86	Nonvolatile memory allocation and hierarchy optimization for high-level synthesis., 2015,,.		3
87	A Dual-Threshold Scheme Along with Security Reinforcement for Energy Efficient Nonvolatile Processors. , 2018, , .		3
88	Reliability and Security in Non-volatile Processors, Two Sides of the Same Coin. , 2018, , .		3
89	Low Overhead Online Checkpoint for Intermittently Powered Non-volatile FPGAs., 2018,,.		3
90	Accelerating CNN-RNN Based Machine Health Monitoring on FPGA. , 2019, , .		3

#	Article	IF	Citations
91	Investigation and Modeling of Multi-Node Body Channel Wireless Power Transfer. Sensors, 2020, 20, 156.	2.1	3
92	One-Shot Refresh: A Low-Power Low-Congestion Approach for Dynamic Memories. IEEE Transactions on Circuits and Systems II: Express Briefs, 2020, 67, 3402-3406.	2.2	3
93	Leakage Power Modeling Method for SRAM Considering Temperature, Supply Voltage and Bias Voltage. , 2006, , .		2
94	Improved adaptive compression arbitration system for wireless sensor networks. Tsinghua Science and Technology, 2010, 15, 202-208.	4.1	2
95	Accurate personal ultraviolet dose estimation with multiple wearable sensors. , 2016, , .		2
96	Design Methodology for Thin-Film Transistor Based Pseudo-CMOS Logic Array with Multi-Layer Interconnect Architecture. , 2017, , .		2
97	Prototyping Energy Harvesting Powered Systems with Nonvolatile Processor (Invited Paper)., 2018,,.		2
98	GAAS: An Efficient Group Associated Architecture and Scheduler Module for Sparse CNN Accelerators. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2020, 39, 5170-5182.	1.9	2
99	Block-Circulant Neural Network Accelerator Featuring Fine-Grained Frequency-Domain Quantization and Reconfigurable FFT Modules., 2021,,.		2
100	DyTAN: Dynamic Ternary Content Addressable Memory Using Nanoelectromechanical Relays. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2021, 29, 1981-1993.	2.1	2
101	Multi-channel precision-sparsity-adapted inter-frame differential data codec for video neural network processor., 2020,,.		2
102	A 65-nm Energy-Efficient Interframe Data Reuse Neural Network Accelerator for Video Applications. IEEE Journal of Solid-State Circuits, 2022, 57, 2574-2585.	3.5	2
103	Dynamic CNN Accelerator Supporting Efficient Filter Generator with Kernel Enhancement and Online Channel Pruning., 2022,,.		2
104	Bit-Aware Fault-Tolerant Hybrid Retraining and Remapping Schemes for RRAM-Based Computing-in-Memory Systems. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69, 3144-3148.	2,2	2
105	Design methodology of multistage time-domain logic speculation circuits. , 2011, , .		1
106	A low-complexity symbol-level differential detection scheme for IEEE 802.15.4 O-QPSK signals. , 2012, , .		1
107	Optimal partition with block-level parallelization in C-to-RTL synthesis for streaming applications., 2013,,.		1
108	A novel hybrid storage architecture for nonvolatile FPGA. , 2014, , .		1

#	Article	IF	Citations
109	Using nonvolatile processors to reduce leakage in power management approaches. , 2014, , .		1
110	Simultaneous accelerator parallelization and point-to-point interconnect insertion for bus-based embedded SoCs. Tsinghua Science and Technology, 2015, 20, 644-660.	4.1	1
111	Dynamic converter reconfiguration for near-threshold non-volatile processors using in-door energy harvesting. , 2016, , .		1
112	CP-FPGA: Computation data-aware software/hardware co-design for nonvolatile FPGAs based on checkpointing techniques. , 2016, , .		1
113	CNN-based pattern recognition on nonvolatile IoT platform for smart ultraviolet monitoring: (Invited) Tj ETQq $1\ 1$	0.784314	rgBT /Overl
114	Mechanical strain and temperature aware design methodology for thin-film transistor based pseudo-CMOS logic array. , 2018, , .		1
115	An Investigation on Inter-degeneration Effect in Body Channel Based Multi-node Wireless Power Transfer. , 2018, , .		1
116	Design Methodology for TFT-Based Pseudo-CMOS Logic Array With Multilayer Interconnection Architecture and Optimization Algorithms. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2019, 38, 2043-2057.	1.9	1
117	A Non-Volatile Computing-In-Memory Framework With Margin Enhancement Based CSA and Offset Reduction Based ADC., 2021,,.		1
118	Multistage Function Speculation Adders. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2015, E98.A, 954-965.	0.2	1
119	A New Thermal-Conscious System-Level Methodology for Energy-Efficient Processor Voltage Selection. , 2006, , .		0
120	An Energy Efficient Sensor Network Processor with Latency-Aware Adaptive Compression. IEICE Transactions on Electronics, 2011, E94-C, 1220-1228.	0.3	0
121	Toward Low-Bit Neural Network Training Accelerator by Dynamic Group Accumulation. , 2022, , .		O