Marco Boi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4737552/publications.pdf

Version: 2024-02-01

677142 623734 22 473 14 22 citations h-index g-index papers 22 22 22 802 docs citations citing authors all docs times ranked

#	Article	IF	CITATIONS
1	A Review on Ionic Substitutions in Hydroxyapatite Thin Films: Towards Complete Biomimetism. Coatings, 2018, 8, 269.	2.6	92
2	Bone regeneration in a rabbit critical femoral defect by means of magnetic hydroxyapatite macroporous scaffolds. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2018, 106, 546-554.	3.4	46
3	Tribological characterization of zirconia coatings deposited on Ti6Al4V components for orthopedic applications. Materials Science and Engineering C, 2016, 62, 643-655.	7.3	35
4	Fabrication and characterization of biomimetic hydroxyapatite thin films for bone implants by direct ablation of a biogenic source. Materials Science and Engineering C, 2019, 99, 853-862.	7.3	32
5	Magnetic forces and magnetized biomaterials provide dynamic flux information during bone regeneration. Journal of Materials Science: Materials in Medicine, 2016, 27, 51.	3.6	31
6	Composite Scaffolds for Bone Tissue Regeneration Based on PCL and Mg-Containing Bioactive Glasses. Biology, 2021, 10, 398.	2.8	30
7	Tough and adhesive nanostructured calcium phosphate thin films deposited by the pulsed plasma deposition method. RSC Advances, 2015, 5, 78561-78571.	3.6	26
8	Cartilage mechanical tests: Evolution of current standards for cartilage repair and tissue engineering. A literature review. Clinical Biomechanics, 2019, 68, 58-72.	1.2	23
9	Pulsed plasma deposition of zirconia thin films on UHMWPE: proof of concept of a novel approach for joint prosthetic implants. Journal of Materials Chemistry B, 2013, 1, 310-318.	5.8	22
10	Plasma-assisted deposition of bone apatite-like thin films from natural apatite. Materials Letters, 2017, 199, 32-36.	2.6	18
11	Nanomechanical mapping of bone tissue regenerated by magnetic scaffolds. Journal of Materials Science: Materials in Medicine, 2015, 26, 5363.	3.6	17
12	NANOMECHANICAL CHARACTERIZATION OF ZIRCONIA THIN FILMS DEPOSITED ON UHMWPE BY PULSED PLASMA DEPOSITION. Journal of Mechanics in Medicine and Biology, 2015, 15, 1550070.	0.7	16
13	CERAMIC THIN FILMS REALIZED BY MEANS OF PULSED PLASMA DEPOSITION TECHNIQUE: APPLICATIONS FOR ORTHOPEDICS. Journal of Mechanics in Medicine and Biology, 2015, 15, 1540002.	0.7	14
14	Design of a novel procedure for the optimization of the mechanical performances of 3D printed scaffolds for bone tissue engineering combining CAD, Taguchi method and FEA. Medical Engineering and Physics, 2019, 69, 92-99.	1.7	14
15	Optimizing thickness of ceramic coatings on plastic components for orthopedic applications: A finite element analysis. Materials Science and Engineering C, 2016, 58, 381-388.	7.3	13
16	Nanoindentation: An advanced procedure to investigate osteochondral engineered tissues. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 96, 79-87.	3.1	12
17	A Comprehensive Microstructural and Compositional Characterization of Allogenic and Xenogenic Bone: Application to Bone Grafts and Nanostructured Biomimetic Coatings. Coatings, 2020, 10, 522.	2.6	11
18	Nanostructure and biomimetics orchestrate mesenchymal stromal cell differentiation: An in vitro bioactivity study on new coatings for orthopedic applications. Materials Science and Engineering C, 2021, 123, 112031.	7.3	11

#	Article	IF	CITATIONS
19	Effects of working gas pressure on zirconium dioxide thin film prepared by pulsed plasma deposition: roughness, wettability, friction and wear characteristics. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 72, 200-208.	3.1	5
20	Ceramic coatings for orthopaedic implants: preparation and characterization. Surface and Interface Analysis, 2016, 48, 616-620.	1.8	3
21	A Nanomechanical Investigation of Engineered Bone Tissue Comparing Elastoplastic and Viscoelastoplastic Modeling. Advances in Materials Science and Engineering, 2017, 2017, 1-8.	1.8	1
22	Nano-mechanical investigation of engineered bone tissue and of the osteochondral interface. Materials Today: Proceedings, 2019, 7, 516-521.	1.8	1