Bhushan P Mahadik

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/473749/publications.pdf

Version: 2024-02-01

24 papers

824 citations

687363 13 h-index 677142 22 g-index

26 all docs 26 docs citations

26 times ranked 1257 citing authors

#	Article	IF	CITATIONS
1	3D printed cellulose based product applications. Materials Chemistry Frontiers, 2022, 6, 254-279.	5.9	25
2	Sustained released of bioactive mesenchymal stromal cellâ€derived extracellular vesicles from 3Dâ€printed gelatin methacrylate hydrogels. Journal of Biomedical Materials Research - Part A, 2022, 110, 1190-1198.	4.0	26
3	Human Mesenchymal Stem Cellâ€Derived Miniature Joint System for Disease Modeling and Drug Testing. Advanced Science, 2022, 9, e2105909.	11.2	22
4	Fabrication of centimeter-sized 3D constructs with patterned endothelial cells through assembly of cell-laden microbeads as a potential bone graft. Acta Biomaterialia, 2021, 121, 204-213.	8.3	11
5	Mechanisms of angiogenic incompetence in Hutchinson–Gilford progeria via downregulation of endothelial NOS. Aging Cell, 2021, 20, e13388.	6.7	11
6	3D printing technologies for <i>in vitro</i> vaccine testing platforms and vaccine delivery systems against infectious diseases. Essays in Biochemistry, 2021, 65, 519-531.	4.7	2
7	Hydrogels Containing Gradients in Vascular Density Reveal Doseâ€Dependent Role of Angiocrine Cues on Stem Cell Behavior. Advanced Functional Materials, 2021, 31, 2101541.	14.9	5
8	Dual Extrusion Patterning Drives Tissue Development Aesthetics and Shape Retention in 3D Printed Nippleâ€Areola Constructs. Advanced Healthcare Materials, 2021, 10, e2101249.	7.6	8
9	Long-Term Sustained Drug Delivery via 3D Printed Masks for the Development of a Heparin-Loaded Interlayer in Vascular Tissue Engineering Applications. ACS Applied Materials & Diterfaces, 2021, 13, 50812-50822.	8.0	13
10	Hybrid 3D Printing of Synthetic and Cell‣aden Bioinks for Shape Retaining Soft Tissue Grafts. Advanced Functional Materials, 2020, 30, 1907145.	14.9	50
11	Vascularization in tissue engineering: fundamentals and state-of-art. Progress in Biomedical Engineering, 2020, 2, 012002.	4.9	77
12	Engineered Liver Tissue Culture in an In Vitro Tubular Perfusion System. Tissue Engineering - Part A, 2020, 26, 1369-1377.	3.1	0
13	Overview of Tissue Engineering Concepts and Applications. , 2020, , 1289-1316.		4
14	Programmable Culture Substrates: 4D Selfâ€Morphing Culture Substrate for Modulating Cell Differentiation (Adv. Sci. 5/2020). Advanced Science, 2020, 7, 2070034.	11.2	2
15	4D Selfâ€Morphing Culture Substrate for Modulating Cell Differentiation. Advanced Science, 2020, 7, 1902403.	11.2	46
16	Addressing present pitfalls in 3D printing for tissue engineering to enhance future potential. APL Bioengineering, 2020, 4, 010901.	6.2	28
17	Current and Future Perspectives on Skin Tissue Engineering: Key Features of Biomedical Research, Translational Assessment, and Clinical Application. Advanced Healthcare Materials, 2019, 8, e1801471.	7.6	131
18	A computational model of feedback-mediated hematopoietic stem cell differentiation in vitro. PLoS ONE, 2019, 14, e0212502.	2.5	13

#	Article	IF	CITATIONS
19	Regulating dynamic signaling between hematopoietic stem cells and niche cells via a hydrogel matrix. Biomaterials, 2017, 125, 54-64.	11.4	53
20	Spatially graded hydrogels for preclinical testing of glioblastoma anticancer therapeutics. MRS Communications, 2017, 7, 442-449.	1.8	22
21	Engineering the hematopoietic stem cell niche: Frontiers in biomaterial science. Biotechnology Journal, 2015, 10, 1529-1545.	3.5	81
22	The use of covalently immobilized stem cell factor to selectively affect hematopoietic stem cell activity within a gelatin hydrogel. Biomaterials, 2015, 67, 297-307.	11.4	94
23	Microfluidic Generation of Gradient Hydrogels to Modulate Hematopoietic Stem Cell Culture Environment. Advanced Healthcare Materials, 2014, 3, 449-458.	7.6	94
24	Cellâ€Laden Hydrogels in Integrated Microfluidic Devices for Longâ€Term Cell Culture and Tubulogenesis Assays. Small, 2013, 9, 3076-3081.	10.0	4