Guo-Ping Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4737240/publications.pdf Version: 2024-02-01

CHO-PINC YANC

#	Article	IF	CITATIONS
1	Bouquet-like uranium-containing selenotungstate consisting of two different Keggin-/Anderson-type units with excellent photoluminescence quantum yield. Chinese Chemical Letters, 2023, 34, 107209.	4.8	7
2	Self-assembly of a new 3D platelike ternary-oxo-cluster: An efficient catalyst for the synthesis of pyrazoles. Chinese Chemical Letters, 2022, 33, 354-357.	4.8	23
3	H4SiW12O40-catalyzed cyclization of epoxides/aldehydes and sulfonyl hydrazides: An efficient synthesis of 3,4-disubstituted 1H-pyrazoles. Chinese Chemical Letters, 2022, 33, 1483-1487.	4.8	33
4	Effect of Na(I)-H2O clusters on self-assembly of sandwich-type U(VI)-containing silicotungstates and the efficient catalytic activity for the synthesis of substituted phenylsulfonyl-1H-pyrazoles. Tungsten, 2022, 4, 149-157.	2.0	21
5	Self-assembly of three Ag-polyoxovanadates frameworks for their efficient construction of C N bond and detoxification of simulant sulfur mustard. Chinese Chemical Letters, 2022, 33, 2605-2610.	4.8	18
6	Two Dawson-type U(VI)-containing selenotungstates with sandwich structure and its highâ€efficiency catalysis for pyrazoles. Chinese Chemical Letters, 2022, 33, 3899-3902.	4.8	15
7	Two novel telluroniobates with efficient catalytic activity for the imidation/amidation reaction. Chemical Communications, 2022, 58, 1167-1170.	2.2	11
8	Two U(VI)-Containing Silicotungstates with Sandwich Structures: Lewis Acid–Base Synergistic Catalyzed Synthesis of Benzodiazepines and Pyrazoles. Inorganic Chemistry, 2022, 61, 3050-3057.	1.9	17
9	Synthesis of 3,3′â€Disubstituted Isobenzofuranâ€1 (3 <i>H</i>)â€Ones via Cs _{0.5} H _{2.5} PW ₁₂ O ₄₀ atalyzed Difunctionalization of Carbonyls. Advanced Synthesis and Catalysis, 2022, 364, 1460-1464.	2.1	11
10	The largest Se-4f cluster incorporated polyoxometalate with high Lewis acid–base catalytic activity. Chemical Communications, 2022, 58, 5737-5740.	2.2	9
11	Copper-Containing Polyoxometalate-Based Metal–Organic Frameworks as Heterogeneous Catalysts for the Synthesis of N-Heterocycles. Inorganic Chemistry, 2022, 61, 6934-6942.	1.9	29
12	Three rare-earth incorporating 6-peroxotantalo-4-selenates and catalytic activities for imidation reaction. Dalton Transactions, 2022, 51, 9988-9993.	1.6	7
13	Heteropolyacid ionic liquid heterogeneously catalyzed synthesis of isochromans <i>via</i> oxa-Pictet–Spengler cyclization in dimethyl carbonate. RSC Advances, 2021, 11, 10610-10614.	1.7	10
14	Synthesis of symmetrical / unsymmetrical thiosulfonates through the disproportionate coupling reaction of sulfonyl hydrazide mediated by phosphomolybdic acid. Tetrahedron Letters, 2021, 65, 152757.	0.7	29
15	2D network structure of zinc(II) complex: A new easily accessible and efficient catalyst for the synthesis of pyrazoles. Applied Organometallic Chemistry, 2021, 35, e6379.	1.7	6
16	Regio―and Stereoselective Synthesis of (<i>Z</i>)â€ <scp>3â€Ylidenephthalides</scp> <i>via</i> <scp>H₃PMo₁₂O_{40<!--<br-->Cyclization of <scp>2â€Acylbenzoic</scp> Acids with Benzylic Alcohols. Chinese Journal of Chemistry, 2021, 39, 3017-3022.}</scp>	sub>ậ€Ca 2.6	talyzed
17	[Co ₃ (μ ₃ -O)]-Based Metal–Organic Frameworks as Advanced Anode Materials in K- and Na-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 46902-46908.	4.0	34
18	Self-assembly of Keggin-type U(<scp>vi</scp>)-containing tungstophosphates with a sandwich structure: an efficient catalyst for the synthesis of sulfonyl pyrazoles. Inorganic Chemistry Frontiers, 2021, 8, 4650-4656.	3.0	46

Guo-Ping Yang

#	Article	IF	CITATIONS
19	Copper-catalyzed aerobic oxidative C–C bond cleavage of simple ketones for the synthesis of amides. Organic and Biomolecular Chemistry, 2020, 18, 6958-6964.	1.5	14
20	H3PMo12O40-catalyzed coupling of diarylmethanols with epoxides/diols/aldehydes toward polyaryl-substituted aldehydes. Chinese Chemical Letters, 2020, 31, 3233-3236.	4.8	37
21	Butterfly and chair clusters using N,Oâ€chelating ligands: A combined crystallographic and mass spectrometric study. Applied Organometallic Chemistry, 2020, 34, e5533.	1.7	1
22	Ligand effect of two Dy(III) complexes on single-molecule magnetism. Polyhedron, 2020, 184, 114553.	1.0	3
23	Ionic Liquid from Vitamin B1 Analogue and Heteropolyacid: A Recyclable Heterogeneous Catalyst for Dehydrative Coupling in Organic Carbonate. ACS Sustainable Chemistry and Engineering, 2019, 7, 3727-3732.	3.2	64
24	Non-corrosive heteropolyacid-based recyclable ionic liquid catalyzed direct dehydrative coupling of alcohols with alcohols or alkenes. Molecular Catalysis, 2019, 468, 80-85.	1.0	22
25	Cu _{1.5} PMo ₁₂ O ₄₀ â€catalyzed condensation cyclization for the synthesis of substituted pyrazoles. Applied Organometallic Chemistry, 2018, 32, e4532.	1.7	29
26	Phosphomolybdic acid as a bifunctional catalyst for Friedel–Crafts type dehydrative coupling reaction. Applied Organometallic Chemistry, 2018, 32, e4450.	1.7	31
27	Ce(<scp>iii</scp>)-Containing tungstotellurate(<scp>vi</scp>) with a sandwich structure: an efficient Lewis acid–base catalyst for the condensation cyclization of 1,3-diketones with hydrazines/hydrazides or diamines. Inorganic Chemistry Frontiers, 2018, 5, 2472-2477.	3.0	50
28	An Atomâ€Economical Route to Substituted βâ€Arylethyl Ketones: Phosphomolybdic Acidâ€Catalyzed Carbohydroxylation of Terminal Alkynes in Organic Carbonate. Advanced Synthesis and Catalysis, 2017, 359, 926-932.	2.1	34