Ronald Vargas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4737051/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fundamentals and applications of photoelectrocatalysis as an efficient process to remove pollutants from water: A review. Chemosphere, 2021, 281, 130821.	8.2	70
2	A TiO2 surface modified with copper(II) phthalocyanine-tetrasulfonic acid tetrasodium salt as a catalyst during photoinduced dichlorvos mineralization by visible solar light. Applied Catalysis B: Environmental, 2014, 156-157, 8-14.	20.2	51
3	Photocatalytic degradation of oil industry hydrocarbons models at laboratory and at pilot-plant scale. Solar Energy, 2010, 84, 345-351.	6.1	43
4	Hydrogen bond interactions at the TiO2 surface: Their contribution to the pH dependent photo-catalytic degradation of p-nitrophenol. Journal of Molecular Catalysis A, 2009, 300, 65-71.	4.8	41
5	Binary flux-promoted formation of trigonal ZnIn ₂ S ₄ layered crystals using ZnS-containing industrial waste and their photocatalytic performance for H ₂ production. Green Chemistry, 2018, 20, 3845-3856.	9.0	38
6	The photocatalytic oxidation of dibenzothiophene (DBT). Journal of Molecular Catalysis A, 2008, 294, 74-81.	4.8	37
7	Photocatalysis and photoelectrochemical glucose oxidation on Bi2WO6: Conditions for the concomitant H2 production. Renewable Energy, 2020, 152, 974-983.	8.9	36
8	Electrochemical oxidation of dichlorvos on SnO2Sb2O5 electrodes. Applied Catalysis B: Environmental, 2014, 144, 107-111.	20.2	29
9	Electrochemical oxygen transfer reactions: electrode materials, surface processes, kinetic models, linear free energy correlations, and perspectives. Journal of Solid State Electrochemistry, 2016, 20, 875-893.	2.5	28
10	Unfolding the Role of <i>B</i> Site-Selective Doping of Aliovalent Cations on Enhancing Sacrificial Visible Light-Induced Photocatalytic H ₂ and O ₂ Evolution over BaTaO ₂ N. ACS Catalysis, 2022, 12, 1403-1414.	11.2	27
11	Modeling the Growth of Nanowire Arrays in Porous Membrane Templates. Journal of the Electrochemical Society, 2014, 161, E3341-E3347.	2.9	25
12	A rotating disk study of the photocatalytic oxidation of p-nitrophenol on phosphorus-modified TiO2 photocatalyst. Applied Catalysis B: Environmental, 2015, 166-167, 529-534.	20.2	22
13	Unraveling the photoelectrochemical behavior of Ni-modified ZnO and TiO2 thin films fabricated by RF magnetron sputtering. Journal of Electroanalytical Chemistry, 2021, 882, 115009.	3.8	21
14	Kinetics of surface reactions on rotating disk electrodes. Electrochimica Acta, 2012, 80, 326-333.	5.2	19
15	Chemical kinetics in solar to chemical energy conversion: The photoelectrochemical oxygen transfer reaction. Energy Reports, 2020, 6, 2-12.	5.1	19
16	Exploring Chemical Kinetics at Home in Times of Pandemic: Following the Bleaching of Food Dye Allura Red Using a Smartphone. Journal of Chemical Education, 2021, 98, 2117-2121.	2.3	19
17	A novel nickel nanowire amperometric sensor: Direct current vs. alternating current strategies for ethanol, acetaldehyde and acetylcholine detection. Journal of Electroanalytical Chemistry, 2015, 740, 61-67.	3.8	16
18	Detoxifying SARS-CoV-2 antiviral drugs from model and real wastewaters by industrial waste-derived multiphase photocatalysts. Journal of Hazardous Materials, 2022, 429, 128300.	12.4	16

RONALD VARGAS

#	Article	IF	CITATIONS
19	Photocatalytic TiO ₂ – assisted decomposition of Triton Xâ€100: inhibition of <i>p</i> â€nitrophenol degradation. Journal of Physical Organic Chemistry, 2008, 21, 1072-1078.	1.9	13
20	Kinetic study of the electrochemical mineralization of phenols in thin-layer condition. Electrochimica Acta, 2010, 55, 6501-6506.	5.2	12
21	Measurement of phenols dearomatization via electrolysis: The UV-Vis solid phase extraction method. Water Research, 2010, 44, 911-917.	11.3	12
22	Electrochemical formation of copper phosphide from aqueous solutions of Cu(II) and hypophosphite ions. Electrochimica Acta, 2020, 354, 136705.	5.2	12
23	Unprecedented large solvent (H ₂ 0 vs D ₂ 0) isotope effect in semiconductors photooxidation. Journal of Physical Organic Chemistry, 2019, 32, e3952.	1.9	11
24	Time-Retrenched Synthesis of BaTaO ₂ N by Localizing an NH ₃ Delivery System for Visible-Light-Driven Photoelectrochemical Water Oxidation at Neutral pH: Solid-State Reaction or Flux Method?. ACS Applied Energy Materials, 2021, 4, 9315-9327.	5.1	11
25	Photocatalytic Oxidation of Urea on Surface-Modified Bi ₂ WO ₆ with <i>trans</i> -4-Stilbenecarboxaldehyde. Journal of Physical Chemistry C, 2021, 125, 12682-12689.	3.1	10
26	Catalytic hydrotreatment in reverse microemulsions under microwave irradiation. Fuel, 2013, 112, 338-346.	6.4	9
27	High-Field Growth of Semiconducting Anodic Oxide Films on Metal Surfaces for Photocatalytic Application. International Journal of Photoenergy, 2019, 2019, 1-15.	2.5	8
28	Elucidating the enhanced photoelectrochemical performance of zinc-blende ZnS/wurtzite ZnO heterojunction and adsorption of water molecules by molecular dynamics simulations. Materials Science in Semiconductor Processing, 2022, 142, 106494.	4.0	8
29	Minimizing electron-hole recombination in modified TiO ₂ photocatalysis: electron transfer to solution as rate-limiting step in organic compounds degradation. Journal of Physical Organic Chemistry, 2017, 30, e3659.	1.9	7
30	Unraveling Kinetic Effects during Photoelectrochemical Mineralization of Phenols. Rutile:Anatase TiO ₂ Nanotube Photoanodes under Thin-Layer Conditions. Journal of Physical Chemistry C, 2021, 125, 610-617.	3.1	6
31	Photopotential decay delay on TiO ₂ surface modified with <i>p</i> â€benzaldehydes: consequences and applications. Journal of Physical Organic Chemistry, 2015, 28, 191-198.	1.9	5
32	Eliciting the contribution of TiN to photoelectrochemical performance enhancement of Imma-LaTiO2N at neutral pH. Materials Today Energy, 2022, 27, 101053.	4.7	5
33	The Photocatalytic Oxidation of 4-Chlorophenol Using Bi2WO6 under Solar Light Irradiation. International Journal of Photochemistry, 2014, 2014, 1-6.	1.0	3
34	Mechanistic aspects of photocatalytic activity of metalloporphyrin–titanium mixtures in microemulsions. Quimica Nova, 0, , .	0.3	3
35	Photoelectrochemical solar cells based on BI2WO6 Quimica Nova, 2014, 37, .	0.3	1
36	ELECTROCHEMICAL OXIDATION OF LAMBDACYHALOTRIN ON PbO2-Bi ELECTRODES. Quimica Nova, 2015, , .	0.3	0

#	Article	IF	CITATIONS
37	FotoelectroquÃmica en sistemas nanoestructurados: una discusión desde sus lÃmites naturales. InfoANALÃTICA, 0, , 52-77.	0.1	0