Wei Ying

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4737010/publications.pdf Version: 2024-02-01

		516215	713013
21	2,444	16	21
papers	citations	h-index	g-index
22	22	22	3596
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Accumulation of microbial DNAs promotes to islet inflammation and \hat{I}^2 cell abnormalities in obesity in mice. Nature Communications, 2022, 13, 565.	5.8	33
2	Microbial DNA Enrichment Promotes Adrenomedullary Inflammation, Catecholamine Secretion, and Hypertension in Obese Mice. Journal of the American Heart Association, 2022, , e024561.	1.6	5
3	Microbial DNA enrichment promotes liver steatosis and fibrosis in the course of nonâ€alcoholic steatohepatitis. Acta Physiologica, 2022, 235, e13827.	1.8	13
4	Cancer-cell-secreted extracellular vesicles suppress insulin secretion through miR-122 to impair systemic glucose homeostasis and contribute to tumour growth. Nature Cell Biology, 2022, 24, 954-967.	4.6	35
5	MiR-690 treatment causes decreased fibrosis and steatosis and restores specific Kupffer cell functions in NASH. Cell Metabolism, 2022, 34, 978-990.e4.	7.2	36
6	CRIg+ Macrophages Prevent Gut Microbial DNA–Containing Extracellular Vesicle–Induced Tissue Inflammation and Insulin Resistance. Gastroenterology, 2021, 160, 863-874.	0.6	47
7	MiR-690, an exosomal-derived miRNA from M2-polarized macrophages, improves insulin sensitivity in obese mice. Cell Metabolism, 2021, 33, 781-790.e5.	7.2	138
8	Chromogranin A regulates gut permeability <i>via</i> the antagonistic actions of its proteolytic peptides. Acta Physiologica, 2021, 232, e13655.	1.8	20
9	Immunosuppression of Macrophages Underlies the Cardioprotective Effects of CST (Catestatin). Hypertension, 2021, 77, 1670-1682.	1.3	31
10	Exosomes as mediators of intercellular crosstalk in metabolism. Cell Metabolism, 2021, 33, 1744-1762.	7.2	253
11	Adipose Tissue Macrophages Modulate Obesity-Associated β Cell Adaptations through Secreted miRNA-Containing Extracellular Vesicles. Cells, 2021, 10, 2451.	1.8	17
12	Hepatocyte-derived exosomes from early onset obese mice promote insulin sensitivity through miR-3075. Nature Metabolism, 2021, 3, 1163-1174.	5.1	43
13	The role of macrophages in obesity-associated islet inflammation and β-cell abnormalities. Nature Reviews Endocrinology, 2020, 16, 81-90.	4.3	195
14	Microbiota-Produced <i>N</i> -Formyl Peptide fMLF Promotes Obesity-Induced Glucose Intolerance. Diabetes, 2019, 68, 1415-1426.	0.3	23
15	Expansion of Islet-Resident Macrophages Leads to Inflammation Affecting Î ² Cell Proliferation and Function in Obesity. Cell Metabolism, 2019, 29, 457-474.e5.	7.2	173
16	Catestatin Inhibits Obesity-Induced Macrophage Infiltration and Inflammation in the Liver and Suppresses Hepatic Glucose Production, Leading to Improved Insulin Sensitivity. Diabetes, 2018, 67, 841-848.	0.3	58
17	Adipose Tissue Macrophage-Derived Exosomal miRNAs Can Modulate InÂVivo and InÂVitro Insulin Sensitivity. Cell, 2017, 171, 372-384.e12.	13.5	858
18	Diabetic Cardiomyopathy: An Immunometabolic Perspective. Frontiers in Endocrinology, 2017, 8, 72.	1.5	60

Wei Ying

#	Article	IF	CITATIONS
19	Isolation and Analysis of Stromal Vascular Cells from Visceral Adipose Tissue. Bio-protocol, 2017, 7, e2444.	0.2	1
20	Hematopoietic-Derived Galectin-3 Causes Cellular and Systemic Insulin Resistance. Cell, 2016, 167, 973-984.e12.	13.5	214
21	Investigation of Macrophage Polarization Using Bone Marrow Derived Macrophages. Journal of Visualized Experiments, 2013, , .	0.2	189